Skip to main content
Log in

Face-Centered and Volume-Centered Discrete Analogs of the Exterior Differential Equations Governing Porous Medium Flow I: Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents a ‘physics-oriented’ approach to approximate the continuum equations governing porous media flow by discrete analogs. To that end, the continuity equation and Darcy’s law are reformulated using exterior differential forms. This way the derivation of a system of algebraic equations (the discrete analog) on a finite-volume mesh can be accomplished by simple and elegant ‘translation rules.’ In the discrete analog the information about the conductivities of the porous medium and the metric of the mesh are represented in one matrix: the discrete dual. The discrete dual of the block-centered finite difference method is presented first. Since this method has limited applicability with respect to anisotropy and non-rectangular grid blocks, the finite element dual is introduced as an alternative. Application of a domain decomposition technique yields the face-centered finite element method. Since calculations based on pressures in volume centers are sometimes preferable, a volume-centered approximation of the face-centered approximation is presented too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I. Aavatsmark (2002) ArticleTitleAn introduction to multipoint flux approximations for quadrilateral grids Comput. Geosci. 6 405–432

    Google Scholar 

  • M. P. Anderson W.W. Woessner (2002) Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press San Diego

    Google Scholar 

  • K. Aziz A. Settari (1979) Petroleum Reservoir Simulation Applied Science Publishers, Ltd. London

    Google Scholar 

  • M. Bai D. Elsworth (2000) Coupled Processes in Subsurface Deformation, Flow and Transport ASCE Press Reston, VA

    Google Scholar 

  • J. Bear (1998) Dynamics of Fluids in Porous Media Dover Publications New York

    Google Scholar 

  • A. Bossavit (1998) Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements Academic Press San Diego

    Google Scholar 

  • A. Bossavit (1999a) ArticleTitleComputational electromagnetism and geometry: building a finite-dimensional ‘‘Maxwell’s house’‘ J. Jpn. Soc. Appl. Electromagn. Mech. 7 150–159

    Google Scholar 

  • A. Bossavit (1999b) ArticleTitleComputational electromagnetism and geometry: network constitutive laws J. Jpn. Soc. Appl. Electromagn. Mech. 7 294–301

    Google Scholar 

  • A. Bossavit (1999c) ArticleTitleComputational electromagnetism and geometry: convergence J. Jpn. Soc. Appl. Electromagn. Mech. 7 401–408

    Google Scholar 

  • A. Bossavit (2000a) ArticleTitleComputational electromagnetism and geometry: from degrees of freedom to fields J. Jpn. Soc. Appl. Electromagn. Mech. 8 102–109

    Google Scholar 

  • A. Bossavit (2000b) ArticleTitleComputational electromagnetism and geometry: the ‘‘Galerkin Hodge’‘ J. Jpn. Soc. Appl. Electromagn. Mech. 8 203–209

    Google Scholar 

  • A. Bossavit (2000c) ArticleTitleComputational electromagnetism and geometry: some questions and answers J. Jpn. Soc. Appl. Electromagn. Mech. 8 372–377

    Google Scholar 

  • A. Bossavit (2001) ArticleTitleGeneralized finite differences in computational electromagnetism Progress Electromag. Res 32 45–64

    Google Scholar 

  • A. Bossavit (2003) ArticleTitleMixed-hybrid methods in magnetostatics: complementarity in one stroke IEEE Trans. Magn 39 IssueID3 1099–1102

    Google Scholar 

  • Bossavit, A.: 2004, Private communication.

  • W. L. Burke (1997) Applied Differential Geometry Cambridge University Press Cambridge

    Google Scholar 

  • G. Chavent J. Jaffré (1986) Mathematical Models and Finite Elements for Reservoir Simulation North Holland Amsterdam

    Google Scholar 

  • T. Frankel (2001) The Geometry of Physics Cambridge University Press Cambridge

    Google Scholar 

  • E. Isaacson H. B. Keller (1967) Analysis of Numerical Methods Wiley New York

    Google Scholar 

  • E. F. Kaasschieter A. J. M. Huijben (1992) ArticleTitleMixed-hybrid finite elements and streamline computations for the potential flow problem Numer. Meth. PDEs 8 221–266

    Google Scholar 

  • J.-L. Mallet (2002) Geomodeling Oxford University Press New York

    Google Scholar 

  • C. W. Misner K. S. Thorne J. A. Wheeler (1973) Gravitation Freeman and Co. San Francisco

    Google Scholar 

  • R. W. Parsons (1996) ArticleTitlePermeability of idealized fractured rock J. Soc. Petrol. Eng 6 126–136

    Google Scholar 

  • Post, E. J.: 1984, The metric dependence of four-dimensional formulations of electromagnetism, J. Math. Phys. 25(3).

  • R. D. Richtmyer K. W Morton (1967) Difference Methods for Initial Value Problems Interscience Publishers New York

    Google Scholar 

  • G. Strang G. J. Fix (1973) An Analysis of the Finite Element Method Prentice-Hall Englewood Cliffs

    Google Scholar 

  • T. Tarhasaari L. Kettunen (1999) ArticleTitleSome realizations of a discrete Hodge operator: a reinterpretation of finite element techniques IEEE Trans. on Magn 35 IssueID3 1494–1497

    Google Scholar 

  • A. Trykozko W. Zijl A. Bossavit (2001) ArticleTitleNodal and mixed finite elements for the numerical homogenization of 3D permeability Comput. Geosci 5 61–84

    Google Scholar 

  • J. S. Welij Particlevan (1985) ArticleTitleCalculations of eddy currents in terms of hexahedra IEEE Trans. Magn 21 IssueID6 2239–2241

    Google Scholar 

  • S. H. Weintraub (1997) Differential Forms: A Complement to Vector Calculus Academic Press San Diego

    Google Scholar 

  • S. Whitaker (1999) The Method of Volume Averaging Kluwer Academic Publishers Dordrecht

    Google Scholar 

  • O. C. Zienkewicz R. L. Taylor (1989) The Finite Element Method, Volume 1: Basic Formulation and Linear Problems McGraw-Hill Book Company London

    Google Scholar 

  • W. Zijl (2004) ArticleTitleA direct method for the identification of the permeability field based on flux assimilation by a discrete analog of Darcy’s law Transport in Porous Media 56 IssueID1 87–112

    Google Scholar 

  • Zijl, W.: 2005, Face-centered and volume-centered discrete analogs of the exterior differential equations governing porous medium flow II: Examples, Transport in Porous Media, accepted.

  • W. Zijl M. Nawalany (2004) ArticleTitleThe edge-based face element method for three-dimensional stream function and flux calculations in porous media flow Transport in Porous Media 55 IssueID3 361–382

    Google Scholar 

  • Zijl, W. and Trykozko, A.: 2001, Numerical homogenization of the absolute permeability tensor around wells, SPEJ 399–408.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Zijl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijl, W. Face-Centered and Volume-Centered Discrete Analogs of the Exterior Differential Equations Governing Porous Medium Flow I: Theory. Transp Porous Med 60, 109–122 (2005). https://doi.org/10.1007/s11242-004-4044-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-004-4044-0

Keywords

Navigation