Skip to main content
Log in

Somatic embryogenesis and plantlet regeneration in red sandalwood (Pterocarpus santalinus)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cotyledonary segments from the germinated immature zygotic embryos were used for the somatic embryogenesis of red sandalwood (Pterocarpus santalinus). The explants were established on Murashige and Skoog (MS) medium containing 5% sucrose and the combination of 6-benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2,4-D), and α-Naphthaleneacetic acid. All the treatments responded to callus induction with a 36–97% frequency range. The maximum embryogenic frequency (69.44%) was obtained when 0.1 mg/l BAP + 2 mg/l 2,4-D and 0.1 mg/l BAP + 4 mg/l 2,4-D combinations were used. When the explants were treated with individual growth regulators, the maximum embryogenic frequency (58.33%) was produced by 4 mg/l 2,4-D. BAP was completely ineffective for somatic embryogenesis when used individually. The average number of globular-staged somatic embryos ranged between 1 and 5 (irrespective of the treatments). The maximum number of the cotyledonary-staged somatic embryos (2.85) was obtained with the treatment 0.1 mg/l BAP and 2 mg/l 2,4-D. The maximum plantlets were developed (1.30) when the cotyledonary-staged embryos from 0.1 mg/l BAP and 2 mg/l 2,4-D were transferred to MS basal medium. The plantlets obtained were acclimatized and showed 100% survival in the greenhouse condition. The embryonic cells have been histologically distinguished from non-embryonic cells with dense cytoplasm and a long suspensor. The induction, maturation, and germination of somatic embryos were challenging, suggesting the need for molecular approaches through proteomic expression for mass production and understanding of the evolution, structure, and genetic organization of the plant species.

Key message

2,4-D and NAA, individually or in combination with BAP, has a significant effect on the embryonic potential of cotyledon explant of P. santalinus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available by the corresponding author on reasonable reason request.

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic acid

PGR:

Plant growth regulator

References

  • Anuradha M, Pullaiah T (1999) Propagation studies of red sanders (Pterocarpus santalinus L.f.) in vitro-an endangered taxon of Andhra Pradesh, India. Taiwania 44(3):311–324

    Google Scholar 

  • Arockiasamy S, Ignacimuthu S, Melchias G (2000) Influence of growth regulators and explants type on in-vitro shoot propagation and rooting of red sandalwood (Pterocarpus santalinus L.). Indian J Exp Biol 38:1270–1273

    CAS  PubMed  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Subasinghe S, Yoon M (2011) Pterocarpus santalinus Linn.f. (Rath handun): a review of its botany, uses, phytochemistry and pharmacology. J Korean Soc Appl Biol Chem 54(4):495–500. https://doi.org/10.3839/jksabc.2011.076

    Article  CAS  Google Scholar 

  • Arunkumar AN, Joshi G (2014) Pterocarpus santalinus (Red Sanders) an endemic, endangered tree of India: current status, improvement and the future. J Trop Environ 4(2):1–10

    Google Scholar 

  • Arya S, Kalia RK, Arya ID (2000) Induction of somatic embryogenesis in Pinus roxburghii Sarg. Plant Cell Rep 19:775–780. https://doi.org/10.1007/s002990000197

    Article  CAS  PubMed  Google Scholar 

  • Azamthulla M, Balasubramanian R, Kavimani S (2015) A review on Pterocarpus santalinus Linn. World J Pharm Res 4(2):282–292

    Google Scholar 

  • Balaraju K, Agastian P, Agnacimuthu S, Park K (2011) A rapid in vitro propagation of red sanders (Pterocarpus santalinus) using shoot tip explants. Acta Physiol Plant 33(6):2501–2510. https://doi.org/10.1007/s11738-011-0795-8

    Article  CAS  Google Scholar 

  • Bulle S, Reddyvari H, Nallanchakravarthula V, Vaddi DR (2016) Therapeutic potential of Pterocarpus santalinus L.: an update. Pharmacogn Rev 10(19):43–49. https://doi.org/10.4103/0973-7847.176575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canhoto JM, Rama SC, Cruz GS (2006) Somatic embryogenesis and plant regeneration in carob (Ceratonia siliqua L.). In Vitro Cell Dev Biol Plant 42:514–519. https://doi.org/10.1079/IVP2006819

    Article  CAS  Google Scholar 

  • Chakraborty T, Chaitanya KV, Lambardi M, Akhtar N (2022) In vitro morphogenetic responses from cotyledonary explants of immature zygotic embryos of Pterocarpus santalinus. Plant Cell Tiss Organ Cult 150:669–681. https://doi.org/10.1007/s11240-022-02320-6

    Article  CAS  Google Scholar 

  • Chaturani GDG, Subasinghe S, Jayatilleka MP (2006) In-vitro establishment, germination and growth performance of red sandalwood (Pterocarpus santalinus L.). Trop Agri Res Ext 9:116–130

    Article  Google Scholar 

  • Chen S, Li Y, Xu C, Huang X, Liu T, Peng B, Pan J, Lpn M, Liao Y (2019) Tissue culture of Red Sandalwood (Pterocarpus santalinus). Agri Biotechnol 8(5):50–54

    Google Scholar 

  • Chitra Devi B, Narmathabai V (2011) Somatic embryogenesis in the medicinal legume Desmodium motorium (Houtt.) Merr. Plant Cell Tiss Organ Cult 106:409–418. https://doi.org/10.1007/s11240-011-9937-3

    Article  CAS  Google Scholar 

  • da Silva ML, Paim-Pinto DL, de Campos JMS, de Carvalho IF, Rocha DI, Batista DS, Otoni WC (2021) Repetitive somatic embryogenesis from wild passion fruit (Passifora cincinnata Mast.) anthers. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-021-02083-6

    Article  Google Scholar 

  • Dunstan DI, Tautorus TE, Thorpe TA (1995) Somatic embryogenesis in woody plants. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 471–538

    Chapter  Google Scholar 

  • Ebrahimi M, Mokhtari A, Amirian R (2018) A highly efficient method for somatic embryogenesis of Kelussia odorotissima Mozaff., an endangered medicinal plant. Plant Cell Tiss Organ Cult 132:99–110. https://doi.org/10.1007/s11240-017-1314-4

    Article  CAS  Google Scholar 

  • Fráterová L, Salaj T, Matušíková I, Salaj J (2013) The role of chitinases and glucanases in somatic embryogenesis of black pine and hybrid firs. Central Eur J Biol. https://doi.org/10.2478/s11535-013-0234-5

    Article  Google Scholar 

  • Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938. https://doi.org/10.3389/fpls.2016.00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulzar B, Mujib A, Malik MQ, Sayeed R, Mamgain J, Ejaz B (2020) Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 18:31. https://doi.org/10.1186/s43141-020-00047-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Halim ME, Misra A (2011) The effects of the aqueous extract of Pterocarpus santalinus heartwood and vitamin E supplementation in streptozotocin-induced diabetic rats. J Med Plants Res 5(3):398–409

    Google Scholar 

  • Han KH, Park YG (1999) Somatic embryogenesis in Black locust (Robinia pseudoacacia L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 149–161

    Chapter  Google Scholar 

  • Hasbullah NA, Taha RM, Awal A (2007) Identification of embryogenic callus and in vitro somatic embryo formation in Gerbera jamesonii Bolus ex. Hook F Catrina 2(2):113–117

    Google Scholar 

  • Hazubska-Przybył T, Ratajczak E, Obarska A, Pers-Kamczyc E (2020) Different roles of auxins in somatic embryogenesis efficiency in two Picea species. Int J Mol Sci 21:3394. https://doi.org/10.3390/ijms21093394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Sun Y, Wu B, Duan H, Zheng H, Hu D, Lin H, Tong Z, Xu J, Li Y (2017) Somatic embryogenesis of immature Cunninghamia lanceolata (Lamb.) hook zygotic embryos. Sci Rep 7:56. https://doi.org/10.1038/s41598-017-00156-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain MK, Anis M, Shahzad A (2010) Somatic embryogenesis and plant regeneration in Pterocarpus marsupium Roxb. Trees 24:781–787. https://doi.org/10.1007/s00468-010-0448-3

    Article  CAS  Google Scholar 

  • Isah T (2019) Proteome study of somatic embryogenesis in Nothapodytes nimmoniana (J. Graham) Mabberly. 3 Biotech 9:119. https://doi.org/10.1007/s13205-019-1637-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadhav J, Gonjari G, Kanase A (2011) Angiogenic effects of Pterocarpus santalinus extracts in the chick chorioallantoic membrane. Drug Invent Today 3(6):62–68

    Google Scholar 

  • Jadhav J, Mane A, Kanase A (2012) Stimulatory effect of Pterocarpus santalinus on vasculogenesis in Chick Chorioallantoic Membrane (CAM). J Pharm Res 5(1):208–211

    Google Scholar 

  • Kaul T, Ram B, Pandey S, Reddy CS, Reddy MK (2014) Unravelling the regulation of somatic embryogenesis by extracellular calcium and auxin efflux blockers in hypocotyl explants of Albizzia lebbeck L.: similarity in action. Int J Bioassays 3(11):3536–3542

    Google Scholar 

  • Kendurkar SV, Nadgauda RS, Phadke CH, Jana MM, Shirke SV, Mascarenhas AF (1995) Somatic embryogenesis in some woody angiosperms. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 5. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 49–79

    Google Scholar 

  • Keshavamurthy M, Srinath BS, Ravishankar VR (2018) Phytochemicals mediated green synthesis of gold nanoparticles using Pterocarpus santalinus L. (Red Sanders) bark extract and their antimicrobial properties. Partic Sci Technol 36(7):785–790. https://doi.org/10.1080/02726351.2017.1302533

    Article  CAS  Google Scholar 

  • Lakshmi Sita G, Shobha J, Vaidyanathan CS (1980) Regeneration of whole plants by embryogenesis from cell suspension cultures of sandalwood. Curr Sci 49(5):196–198

    Google Scholar 

  • Mehta R, Sharma V, Sood A, Sharma M, Sharma RK (2011) Induction of somatic embryogenesis and analysis of genetic fidelity of in vitro-derived plantlets of Bambusa nutans Wall., using AFLP markers. Eur J Forest Res 130:729–736. https://doi.org/10.1007/s10342-010-0462-4

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Navada V (2014) Ethnomedicinal value of Pterocarpus santalinus (Linn.f.), a Fabaceae member. Orient Pharm Exp Med 14:313–317. https://doi.org/10.1007/s13596-014-0168-098

    Article  Google Scholar 

  • Nolan KE, Song Y, Liao S, Saeed NA, Zhang X, Rose RJ (2014) An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula. PLoS ONE 9(6):e99908. https://doi.org/10.1371/journal.pone.0099908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, Mano N, Figueiredo J, Dias MC (2018) Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell Tiss Organ Cult 132:71–84. https://doi.org/10.1007/s11240-017-1311-7

    Article  CAS  Google Scholar 

  • Prakash E, Khan PSSV, Rao TJVS, Meru ES (2006) Micropropagation of red sanders (Pterocarpus santalinus L.) using mature nodal explants. J for Res 11:329–335. https://doi.org/10.1007/s10310-006-0230-y

    Article  Google Scholar 

  • Rajeswari V, Paliwal K (2008) In-vitro plant regeneration of red sanders (Pterocarpus santalinus L.f.) from cotyledonary nodes. Indian J Biotechnol 7:541–546

    CAS  Google Scholar 

  • Rao SP, Raju AJS (2002) Pollination ecology of the red sanders Pterocarpus santalinus (Fabaceae), an endemic and endangered tree species. Curr Sci 83(9):1144–1148

    Google Scholar 

  • Rao AM, Ashok B, Mahesh MU, Subbareddy GV, Sekhar VC, Ramanamurthy GV, Rajulu AV (2019) Antibacterial cotton fabrics with in-situ generated silver and copper bimetallic nanoparticles using red sanders powder extract as reducing agent. Int J Polymer Anal Charact 24(4):346–354. https://doi.org/10.1080/1023666X.2019.1598631

    Article  Google Scholar 

  • Renganayaki PR, Vijayalakshmi KP, Tamilarasan C, Nagendra MS (2020) Studies on synchronizing seed germination in red sanders (Pterocarpus santalinus). J Trop Sci 32(1):66–71

    Google Scholar 

  • Sharry S, Ponce JLC, Estrella LH, Cano RMR, Lede S, Abedini W (2006) An alternative pathway for plant in vitro regeneration of chinaberry: tree Melia azedarach L. derived from the induction of somatic embryogenesis. Electron J Biotechnol. https://doi.org/10.2225/vol9-issue3-fulltext-13

    Article  Google Scholar 

  • Shree P, Yadav D, Singh VK, Chaube R, Tripathi YB (2019) Modulation of mTOR receptor in diabetic neuropathy by santalin A of lalchandan (Pterocarpus santalinus): An in-silico assessment by molecular docking. Int J Pharm Sci Res 10(3):1115–1121

    CAS  Google Scholar 

  • Singh AK, Chand S (2003) Somatic embryogenesis and plant regeneration from cotyledon explants of a timber-yielding leguminous tree, Dalbergia sissoo Roxb. J Plant Physiol 160:415–421. https://doi.org/10.1078/0176-1617-00523

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Wang Y, Zhu L, Liu X, Wang Q, Ye J (2021) Evaluation of somatic embryo production during embryogenic tissue proliferation stage using morphology, maternal genotype, proliferation rate and tissue age of Pinus thunbergii Parl. J for Res. https://doi.org/10.1007/s11676-021-01311-1

    Article  Google Scholar 

  • Trigiano RN, Buckley LG, Merkle SA (1999) Somatic embryogenesis in woody legumes. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 198–208

    Google Scholar 

  • Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep 10:66–74. https://doi.org/10.1016/j.btre.2016.03.006

    Article  Google Scholar 

  • Vijayalakshmi KP, Renganayaki PR (2017) Effect of pre-sowing treatment on germination of red sander. Int J Curr Microbiol App Sci 6(4):168–173

    Article  CAS  Google Scholar 

  • Viji M, Maheswari P, Karuppanapandian T, Manoharan K (2012) Effect of polyethylene glycol and mannitol on somatic embryogenesis of pigeonpea, Cajanus cajan (L) Millsp. Afr J Biotechnol 11(45):10340–10349. https://doi.org/10.5897/AJB12.368

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Wu S, Lin M, Chang W (2003) Plant regeneration through somatic embryogenesis from zygotic embryo-derived callus of Areca catechu L. (Arecaceae). In Vitro Cell Dev Biol Plant 39:34–36. https://doi.org/10.1079/IVP2002373

    Article  Google Scholar 

  • Warakagoda PS, Subasinghe S (2013) In-vitro propagation of Pterocarpus santalinus L. (red sandalwood) through tissue culture. J Nat Sci Found Srilanka 41(1):53–63

    CAS  Google Scholar 

  • Weaver LA, Trigiano RN (1991) Regeneration of Cladrastis lutea (Fabaceae) via somatic embryogenesis. Plant Cell Rep 10:183–186

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Yang F, Ke X, Chen Y, Ye J, Zhu L (2021) Somatic embryogenesis of masson pine (Pinus massoniana): initiation, maturation and genetic stability analysis at SSR loci. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-021-02036-z

    Article  Google Scholar 

  • Xu K, Wang W, Yu D, Li X, Chen J, Feng B, Zhao Y, Cheng M, Liu X, Li C (2019) NAA at a high concentration promotes efficient plant regeneration via direct somatic embryogenesis and SE-mediated transformation system in Ranunculus sceleratus. Scientific Report 9:18321. https://doi.org/10.1038/s41598-019-54538-8

    Article  CAS  Google Scholar 

  • Yan J, Peng P, Duan G, Lin T, Bai Y (2021) Multiple analyses of various factors affecting the plantlet regeneration of Picea mongolica (H. Q. Wu) WD Xu from somatic embryos. Sci Rep 11:6694. https://doi.org/10.1038/s41598-021-83948-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmedullah M, Rasingam L, Swamy J, Nagaraju S, Shankara Rao M (2019) Non-detriment findings report on the red sanders tree (Pterocarpus santalinus L.f). Botanical Survey of India (Deccan Regional Centre), MoEFCC, Hyderabad

  • Ahmedullah M (2021) Pterocarpus santalinus. The IUCN Red List of Threatened Species 2021: e.T32104A187622484. https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T32104A187622484.en

  • Buendía-González L, Estrada-Zúñiga ME, Orozco-Villafuerte J, Cruz-Sosa F, Vernon-Carter EJ (2012) Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata. Plant Cell Tiss Organ Cult 108:287–296. https://doi.org/10.1007/s11240-011-0042-4

  • Hegde M, Singh BG, Krishnakumar N (2012) Non-detriment findings (NDFs) study for Pterocarpus santalinus L.f. (Red Sanders) in India, Institute of Forest Genetics and Tree Breeding, Indian Council of Forestry Research and Education.

  • Padmalatha K, Prasad MNV (2008) In-vitro plant regeneration of Pterocarpus santalinus L.f (red sanders): an endangered medical plant and important timber tree. Tree For Sci Biotechnol 1–6.

  • UNEP-WCMC (2017) Technical report, report on species/country combinations selected for review by the Plants Committee following CoP16, CITES Project No.A-498.

Download references

Acknowledgements

The financial support provided by SCIENCE & ENGINEERING RESEARCH BOARD (SERB), Department of Science and Technology, Government of India for the major research project under a core research grant to Dr. Nasim Akhtar (Principal Investigator) and Dr. K. Viswanatha Chaitanya (Co-investigator) (sanction order no. CRG/2018/000517 dated 24.6.2019) is gratefully acknowledged.

Funding

Funding was provided by Mission on Nano Science and Technology (Grant No.: CRG/2018/000517).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript's concept, layout, and design are conceived by the corresponding author Dr. Nasim Akhtar. The whole manuscript, including the table and text, is developed, written and revised by the first author Tanushree Chakraborty. The manuscript was reviewed and edited several times by authors Dr. K. Viswanatha Chaitanya and Dr. Nasim Akhtar.

Corresponding author

Correspondence to Nasim Akhtar.

Ethics declarations

Conflict of interest

All the authors declared that there is no conflict of interest concerning any part of the manuscript.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Paloma Moncaleán.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Chaitanya, K.V. & Akhtar, N. Somatic embryogenesis and plantlet regeneration in red sandalwood (Pterocarpus santalinus). Plant Cell Tiss Organ Cult 153, 547–558 (2023). https://doi.org/10.1007/s11240-023-02491-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02491-w

Keywords

Navigation