Skip to main content

Advertisement

Log in

Impact of kinetin on essential oil content in Acmella oleracea

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The use of growth regulators in in vitro plant cultures is a common practice in agriculture, and has been known to improve plant development and affect chemical composition in plants that produce essential oils. In this study, the researchers investigated the effect of kinetin, a growth regulator, on the chemical composition of Acmella oleracea essential oil produced in vitro. The experiment consisted of four treatments with varying concentrations of kinetin added to the culture medium: T1 (control), T2 (0.1 mg L−1), T3 (0.3 mg L−1), and T4 (0.5 mg L−1). After 90 days of growth in a controlled environment, the leaves were harvested and hydrodistilled to obtain the essential oil. Gas chromatography coupled with mass spectrometry (GC–MS) was used for chemical characterization of the essential oil. The results showed that the concentrations of the major compounds in A. oleracea essential oil were influenced by the addition of kinetin to the culture medium. Specifically, the concentrations of 2-tridecanone and trans-farnesene increased with increasing levels of kinetin, while the concentrations of Germacrene D and 8-cedren-13-ol decreased with increasing levels of kinetin. These findings suggest that the addition of kinetin can influence the chemical composition of A. oleracea essential oil produced in vitro. Further studies are underway to evaluate the effect of other compounds on the chemical composition of A. oleracea essential oil.

Key message

Kinetin addition to in vitro cultures of Acmella oleracea influences the chemical composition of its essential oil, increasing 2-tridecanone and trans-farnesene, while decreasing Germacrene D and 8-cedren-13-ol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data available upon request to the corresponding author.

References

  • Barciszewski J, Massino F, Clark BFC (2007) Kinetin—a multiactive molecule. Int J Biol Macromol 40(3):182–192. https://doi.org/10.1016/j.ijbiomac.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  • Benelli G, Pavela R, Drenaggi E, Maggi F (2019) Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) RK Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. J Ethnopharmacol 229:272–279

    Article  CAS  PubMed  Google Scholar 

  • Borges SL, Nunes KDNM, Jacques RA, Lima GPP (2014) Perfil cromatográfico do óleo essencial de jambu identificados por cromatógrafo a gás acoplado a espectrômetro de massas. Revista Cultivando o Saber 7(3):29–40

    Google Scholar 

  • Chakraborty A, Devi RKB, Rita S, Sharatchandra K, Singh TI (2004) Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models. Indian J Pharmacol 36(4):148–150

    Google Scholar 

  • da Silva AM, de Aragão RM, de Freitas Cabral M (2022) Produtividade e trocas gasosas de jambu (Acmella oleracea LRK Jansen) sob adubação orgânica e química. In: Francisco, PRM (Ed) Tecnologias aplicadas na Agronomia (pp. 19–39), Campina Grande CE: EPTEC.

  • Daines AM, Payne RJ, Humphries ME, Abell AD (2003) The synthesis of naturally occurring vitamin K and vitamin K analogues. Curr Org Chem 7(16):1625–1634. https://doi.org/10.2174/1385272033486279

    Article  CAS  Google Scholar 

  • Dallazen JL, Luz BBD, Maria-Ferreira D, Nascimento AM, Cipriani TR, Souza LMD, Paula Werner MFD (2022) Local Effects of Natural Alkylamides from Acmella oleracea and synthetic isobutylalkyl amide on neuropathic and postoperative pain models in mice. Fitoterapia 160:105224. https://doi.org/10.1016/j.fitote.2022.105224

    Article  CAS  PubMed  Google Scholar 

  • Dedino DB, Lima JD, Bortolucci WDC, Rivadavea WR, Lovato ECW, Gazim ZC, Gonçalves JE, Monzon DLR, Silva DGJ (2022) Red LED light and different cultivation methods changed the essential oil composition of Acmella oleracea. Plant Cell Tissue Organ Cult (PCTOC). https://doi.org/10.1007/s11240-022-02367-5

    Article  Google Scholar 

  • Dias AMA, Santos P, Seabra IJ, Júnior RNC, Braga MEM, Sousa HCD (2012) Spilanthol from Spilanthes acmella flowers, leaves and stems obtained by selective supercritical carbon dioxide extraction. J Supercrit Fluids 61:62–70. https://doi.org/10.1016/J.SUPFLU.2011.09.020

    Article  CAS  Google Scholar 

  • Erişen S, Kurt-Gür G, Servi H (2020) In vitro propagation of Salvia sclarea L. by meta-Topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Indus Crops Prod 157(1):112892. https://doi.org/10.1016/j.indcrop.2020.112892

    Article  CAS  Google Scholar 

  • Farré-Armengol G, Peñuelas J, Li T, Yli-Pirila P, Filella I, Llusia J, Blande JD (2015) Ozone degrades floral scent and reduces pollinator attraction to flowers. New Phytol 209(1):152–160. https://doi.org/10.1111/nph.13620

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo PLB, Pinto LC, Costa JSD, Silva ARCD, Mourão RHV, Montenegro RC, Silva JKRD, Maia JGS (2019) Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J Ethnopharmacol 232:30–38. https://doi.org/10.1016/j.jep.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  • Franca JV, Queiroz MSR, da Amaral BP, Simas NK, da Silva NCB, Leal ICR (2016) Distinct growth and extractive methods of Acmellaoleracea (L.) RK Jansen rising different concentrations of spilanthol: an important bioactive compound in human dietary. Food Res Int 89:781–789

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. https://doi.org/10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  • Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2009) Análise multivariada de dados. Bookman.

  • Islam MT, Ali ES, Uddin SJ, Shaw S, Islam A, Ahmed I, Shill MC, Karmakar UK, Yarla NS, Khan IN, Billah M, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AWK, El-Demerdash A, Xiao J, Dey PK, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KRR, Horbańczuk JO, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG (2018) Phytol: a review of biomedical activities. Food Chem Toxicol 121:82–94. https://doi.org/10.1016/j.fct.2018.08.032

    Article  CAS  PubMed  Google Scholar 

  • Kawaree R, Okonogi S, Phutdhawong W (2008) Chemical composition and antioxidant evaluation of volatile oils from Thai medicinal plants. Acta Hortic 786:209–215

    Article  CAS  Google Scholar 

  • Lalthanpuii PB, Lalchhandama K (2020) Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharm Biol 58(1):393–399. https://doi.org/10.1080/13880209.2020.1760316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano C, Boyd E, Holmes G, Hewavitharana S, Pasulka A, Ivors K (2021) The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci Rep 11(3188):1–17. https://doi.org/10.1038/s41598-021-82768-2

    Article  CAS  Google Scholar 

  • Lima NK, da Silva ES, da Cruz RMS, Monteiro PHR, da Silva GJ (2020) Plant growth regulators in the in vitro cultivation of Acmella oleracea (L.). J Agric Stud 8(2):774–784

    Google Scholar 

  • Macêdo DGD, Souza MMA, Morais-Braga MFB, Coutinho HDM, Santos ATLD, Machado AJT, Rodrigues FFG, Costa JGMD, Menezes IRA (2020) Seasonality influence on the chemical composition and antifungal activity of Psidium myrtoides O. Berg South Afr J Bot 128:9–17. https://doi.org/10.1016/j.sajb.2019.10.009

    Article  CAS  Google Scholar 

  • Malosso MG, Barbosa EP, Nagao EO (2008) Micropropagação de jambu [Acmella oleracea (L.) R.K. Jansen]. Rev Bras Plantas Med 10:91–95

    CAS  Google Scholar 

  • Matsuo Y, Sakagami H, Mimaki Y (2014) A rare type of sesquiterpene and β-santalol derivatives from Santalum album and their cytotoxic activities. Chem Pharm Bull 62(12):1192–1199. https://doi.org/10.1248/cpb.c14-00457

    Article  CAS  Google Scholar 

  • Moita Neto JM, Moita GC (1998) An introduction analysis exploratory multivariate date. Quím Nova 21(4):467–469. https://doi.org/10.1590/S0100-40421998000400016

    Article  CAS  Google Scholar 

  • Nascimento LES, Arriola NDA, da Silva LAL, Faqueti LG, Sandjo LP, Araújo CESD, Biavatti MW, Barcelo-Oliveira JJ, Amboni RDDMC (2020) Phytochemical profile of different anatomical parts of jambu (Acmella oleracea (L.) RK Jansen): a comparison between hydroponic and conventional cultivation using PCA and cluster analysis. Food Chem 332(1):127393. https://doi.org/10.1016/j.foodchem.2020.127393

    Article  CAS  PubMed  Google Scholar 

  • Netscher T (2007) Síntese de vitamina E. Vitam Horm 76:155–202. https://doi.org/10.1016/S0083-6729(07)76007-7

    Article  CAS  PubMed  Google Scholar 

  • Passinho-Soares HC, David JP, Santana JRFD, David JM, Rodrigues FDM, Mesquita PRR, Oliveira FSD, Bellintani MC (2017) Influence of growth regulators on distribution of trichomes and the production of volatiles in micropropagated plants of Plectranthus ornatus. Rev Bras 27(6):679–690. https://doi.org/10.1016/j.bjp.2017.10.001

    Article  CAS  Google Scholar 

  • Paulraj J, Govindarajan R, Palpu P (2013) The genus Spilanthes ethnopharmacology, phytochemistry, and pharmacological properties: a review. Adv Pharmacol Pharma Sci 2013:510298. https://doi.org/10.1155/2013/510298

    Article  CAS  Google Scholar 

  • Pirmohammadi M, Abai MR, Shayeghi M, Vatandoost H, Rahimi S, Pirmohammadi M (2022) Influence of agro-climatic conditions on chemical compositions and repellency effect of Mentha longifolia plant against malaria vector, Anopheles stephensi. Toxin Rev. https://doi.org/10.1080/15569543.2021.2022699

    Article  Google Scholar 

  • Ramírez-Rueda RY, Marinho J, Salvador MJ (2019) Bioguided identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol 14(14):1179–1189. https://doi.org/10.2217/fmb-2019-0167

    Article  CAS  PubMed  Google Scholar 

  • Renninger N, Mcphee D (2008) Fuel Composition Comprising Farnesene and Farnesane Derivatives and Method of Making and Using Same. US patent 0098645. https://patents.google.com/patent/US20080083158A1/en. Accessed 23 June 2022.

  • Samsurrijal SF, Rahim RA, Azizan NS, Noor SNFM, Vuanghao L (2019) Enhancement of dental pulp stem cell viability using Acmella oleraceae extract combined with bioactive glass. J Biomed Clin Sci (JBCS) 4(1):34–43

    Google Scholar 

  • Savic SM, Cekic ND, Savic SR, Ilic TM, Savic SD (2021) ‘All-natural’anti-wrinkle emulsion serum with Acmella oleracea extract: a design of experiments (DoE) formulation approach, rheology and in vivo skin performance/efficacy evaluation. Int J Cosmet Sci 43(5):530–546. https://doi.org/10.1111/ics.12726

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Levenson C, Bell RH, Anderson SA, Hudson JB, Collins CC, Cox ME (2014) Suppression of lipopolysaccharide-stimulated cytokine/chemokine production in skin cells by sandalwood oils and purified α-santalol and β-santalol. Phytother Res 28(6):925–932. https://doi.org/10.1002/ptr.5080

    Article  CAS  PubMed  Google Scholar 

  • Silveira N, Sandjo LP, Biavatti MW (2018) Spilanthol-containing products: a patent review (1996–2016). Trends Food Sci Technol 74:107–111. https://doi.org/10.1016/j.tifs.2018.02.012

    Article  CAS  Google Scholar 

  • Silveira RM, Carvalho AFU, Bünger MO, Gomes MM, Costa IRD (2022) How much do the environmental conditions interfere with the essential oils of Eugenia spp L. (Myrtaceae)? J Braz Chem Soc 33(3):274–280. https://doi.org/10.21577/0103-5053.20210146

    Article  CAS  Google Scholar 

  • Spiegeleer BD, Boonen J, Malysheva SV, Mavungu JDD, Saeger SD, Roche N, Blondeel P, Taevernier L, Veryser L (2013) Skin penetration enhancing properties of the plant N-alkylamide spilanthol. J Ethnopharmacol 148(1):117–125. https://doi.org/10.1016/J.JEP.2013.03.076

    Article  PubMed  Google Scholar 

  • Spinozzi E, Pavela R, Bonacucina G, Perinelli DR, Cespi M, Petrelli R, Crespi M, Petrelli M, Cappellacci L, Fiorini D, Scortichini S, Garzoli S, Angeloni C, Freschi M, Hrelia S, Quassinti L, Bramucci M, Lupidi G, Sut S, Dall’Acqua S, Benelli G, Canale A, Drenaggi E, Maggi F (2021) Spilanthol-rich essential oil obtained by microwave-assisted extraction from Acmella oleracea (L.) RK Jansen and its nanoemulsion: insecticidal, cytotoxic and anti-inflammatory activities. Indust Crops Prod 172:114027. https://doi.org/10.1016/j.indcrop.2021.114027

    Article  CAS  Google Scholar 

  • Sut S, Ferrarese I, Shrestha SS, Kumar G, Slaviero A, Sello S, Altissimo A, Pagni L, Gattesco F, Dall’Acqua S (2020) Comparison of biostimulant treatments in Acmella oleracea cultivation for alkylamides production. Plants 9(7):818. https://doi.org/10.3390/plants9070818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • TIBCO Statistica (2017), v. 13.3.0, TIBCO Software Inc, Palo Alto, CA, USA. https://www.tibco.com/products/tibco-statistica

  • Uthpala TGG, Navaratne SB (2020) Acmellaoleracea plant; identification, applications and use as an emerging food source—review. Food Rev Intl 37(4):399–414. https://doi.org/10.1080/87559129.2019.1709201

    Article  CAS  Google Scholar 

  • Vibha P, Gaurav S, Vinay S, Veena A (2014) Biodiversity and in vitro conservation of three medicinally important herbs: Spilanthes acmella L. var. oleraceae Clarke, S. calva L., and S. paniculata Wall. ex DC. J Herbs Spices Med Plants 20(3):295–318

    Article  Google Scholar 

  • Weintraub L, Naftzger T, Parr T, Henning S, Soendergaard M (2020) Antioxidant activity and antiproliferative effects of Acmella alba, Acmella oleracea, and Acmella calirrhiza. FASEB J 34(S1):1–1. https://doi.org/10.1096/fasebj.2020.34.s1.06660

    Article  Google Scholar 

  • Xiao J, Park YG, Guo G, Jeong BR (2021) Effect of iron source and medium pH on growth and development of Sorbus commixta in vitro. Int J Mol Sci 22(1):133. https://doi.org/10.3390/ijms22010133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Postgraduate Program in Biotechnology Applied to Agriculture of Paranaense University for financial support and fellowship.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Araucária.

Author information

Authors and Affiliations

Authors

Contributions

NKL: Conceptualization, Methodology—Original draft preparation; ESS: Methodology; RMSC: Methodology; JDL: Methodology, Data curation, Writing, and Editing; CCS: Writing—Reviewing and Editing; MSQ: Reviewing and Editing; ZCG: Methodology, Resources, Funding acquisition; JEG: Methodology, Resources, Funding acquisition; DLRM: Writing—Reviewing and Editing; RRE: Writing—Reviewing and Editing; GJS: Conceptualization, Visualization, Writing—Reviewing and Editing, Resources, Funding acquisition.

Corresponding author

Correspondence to Glacy Jaqueline da Silva.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

This article contains no studies with human participants or animals performed by any authors.

Additional information

Communicated by KX Tang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, N.K., da Silva, E.S., da Cruz, R.M.S. et al. Impact of kinetin on essential oil content in Acmella oleracea. Plant Cell Tiss Organ Cult 153, 539–546 (2023). https://doi.org/10.1007/s11240-023-02489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02489-4

Keywords

Navigation