Skip to main content
Log in

NaCl-induced flavonoid biosynthesis and oxidative stress responses in suspension cells of Haplophyllum virgatum var. virgatum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

A Correction to this article was published on 07 February 2023

This article has been updated

Abstract

In addition to causing oxidative stress, NaCl can act as an inexpensive elicitor to trigger the biosynthesis of secondary metabolites like flavonoids, an important group of therapeutic compounds found in the Haplophyllum genus. Haplophyllum virgatum is an Iranian endemic plant from this genus. So far, the elicitation effect of NaCl on this plant has not been investigated. Cell suspension culture, along with elicitor application, is an appropriate technique to obtain large amounts of plant-produced compounds. Here, the oxidative stress responses were investigated in suspension cells of H. virgatum var. virgatum in the presence of NaCl (0, 100, 150, and 200 mM) at various time courses (0, 8, 12, 24, 48, 72, and 168 h after treatments). Besides, the expression levels of two critical enzymes in the biosynthetic pathway of flavonoids (chalcone synthase and chalcone isomerase) and the R2R3-MYB transcription factor were measured. The accumulation of rutin (the main flavonoid in Rutaceae) in the NaCl-treated cells was also evaluated by high-performance liquid chromatography (HPLC). The obtained results have demonstrated significant enhancements in the oxidative stress indices (malondialdehyde, proline, hydrogen peroxide, and enzymatic and non-enzymatic antioxidants) and the rutin contents in the studied suspension cells. In addition, positive correlations were deduced between the expression levels of mentioned genes and the rutin contents. These findings highlight the possible regulatory role of R2R3-MYB transcription factors in flavonoid biosynthesis in H. virgatum and the role of these secondary metabolites in responses to NaCl. The obtained results also suggest that NaCl is a suitable elicitor for flavonoid production in the cell suspension culture of the plant.

Key message

NaCl elicited the accumulation of flavonoids in suspension cells of H. virgatum, probably via upregulation of R2R3-MYB, which then upregulated flavonoid biosynthetic genes, CHS and CHI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

Abbreviations

ANOVA:

Analysis of variance

CAT:

Catalase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

cDNA:

Complementary DNA

CT:

Cycle threshold

GAE:

Gallic acid

HCA:

Hierarchical clustering analysis

HPLC:

High-performance liquid chromatography

H2O2 :

Hydrogen peroxide

IAA:

Indol-3-acetic acid

MDA:

Malondialdehyde

MS:

Murashige and Skoog

NAA:

1-naphthaleneacetic acid

NO:

Nitric oxide

NBT:

Nitro blue tetrazolium

POD:

Peroxidase

PCR:

Polymerase chain reaction

QE:

Quercetin

ROS:

Reactive oxygen species

RT-qPCR:

Real-time quantitative PCR

NaCl:

Sodium chloride

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

References

  • Abdallah SB, Aung B, Amyot L, Lalin I, Lachâal M, Karray-Bouraoui N, Hannoufa A (2016) Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant 38(3):72

    Article  Google Scholar 

  • Alharbi K, Al-Osaimi AA, Alghamdi A B (2022) Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A toxicity assessment. Am Chem Soc Omega 7(24):20819–20832

    CAS  Google Scholar 

  • Alhasnawi A, Radziah CC, Kadhimi A, Isahak A, Mohamad A, Yusoff W (2016) Enhancement of antioxidant enzyme activities in rice callus by ascorbic acid under salinity stress. Biol Plant 60(4):783–787

    Article  CAS  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 10(10):4349–4364

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    Article  CAS  Google Scholar 

  • Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H (2019) NtMYB4 and NTCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front Plant Sci 10:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lin F, Yang H, Yue L, Hu F, Wang J, Luo Y, Cao F (2014) Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: Relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiol Plant 36(12):3173–3187

    Article  CAS  Google Scholar 

  • Cheng Y-J, Kim M-D, Deng X-P, Kwak S-S, Chen W (2013) Enhanced salt stress tolerance in transgenic potato plants expressing IBMYB1, a sweet potato transcription factor. J Microbiol Biotechnol 23(12):1737–1746

    Article  CAS  PubMed  Google Scholar 

  • Ciriello M, Formisano L, Soteriou GA, Kyratzis A, De Pascale S, Kyriacou MC, Rouphael Y (2022) Differential response to NaCl osmotic stress in sequentially harvested hydroponic red and green basil and the role of calcium. Front Plant Sci 13:799213–799213

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuong DM, Kwon S-J, Nguyen BV, Chun SW, Kim JK, Park SU (2020) Effect of salinity stress on phenylpropanoid genes expression and related gene expression in wheat sprout. Agron 10(3):390

    Article  CAS  Google Scholar 

  • Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34(3):e00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Eissa T, González-Burgos E, Carretero M, Gómez-Serranillos M (2014) Biological activity of HPLC-characterized ethanol extract from the aerial parts of Haplophyllum tuberculatum. Pharm Biol 52(2):151–156

    Article  CAS  PubMed  Google Scholar 

  • El-Badri AM, Batool M, Mohamed AA, Wang I, Khatab Z, Sherif A, Ahmad A, Khan H, Hassan MN, Elrewainy HM IM (2021) Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxid 10(8):1227

    Article  CAS  Google Scholar 

  • Fatima S, Mujib A, Tonk D (2015) NaCl amendment improves vinblastine and vincristine synthesis in Catharanthus roseus: A case of stress signalling as evidenced by antioxidant enzymes activities. Plant Cell Tiss Organ Cult (PCTOC) 121(2):445–458

    Article  CAS  Google Scholar 

  • Fornalé S, Lopez E, Salazar-Henao JE, Fernández-Nohales P, Rigau J, Caparros-Ruiz D (2014) AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol 55(3):507–516

    Article  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath R, Packer L (1968) Biophysics. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hnilickova H, Kraus K, Vachova P, Hnilicka F (2021) Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plant 10(5):845

    Article  CAS  Google Scholar 

  • Hussein EA, Aqlan EM (2011) Effect of mannitol and sodium chloride on some total secondary metabolites of fenugreek calli cultured in vitro. Plant Tissue Cult Biotechnol 21(1):35–43

    Article  Google Scholar 

  • Jeon D, Lee S, Choi S, Seo S, Kim C (2020) Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L. Korean J Agric Sci 47(1):105–117

    CAS  Google Scholar 

  • Joharchi M (2008) Flora of Iran: Rutaceae. Tehran, 60–104 S. – Ill., Kt. – ISBN: 978-964-473-271-3 – Signatur: F 3.7-Flo-60

  • Karimi F, Yousefzadi M, Mirjalili M, Rahmani N, Zaeifi M (2013) Chemical composition of the essential oil of Haplophyllum virgatum var. Virgatum from Iran. Chem Nat Compd 49(1):148–149

    Article  CAS  Google Scholar 

  • Khataee E, Karimi F, Razavi K (2019) Chromium-induced alkaloid production in Catharanthus roseus (L.) in vitro cultured shoots and related gene expression patterns particularly for the novel gene GS. Acta Agric Slov 113(1):95–108

    Article  CAS  Google Scholar 

  • Krishnan R, Anil Kumar V, Murugan K (2014) Establishment of cell suspension culture in Marchantia linearis Lehm & Lindenb. for the optimum production of flavonoids. 3 Biotech 4(1):49–56

    Article  PubMed  Google Scholar 

  • Kumar D, Al Hassan M, Naranjo MA, Agrawal V, Boscaiu M, Vicente O (2017) Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE 12(9):e0185017

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Pamidimarri S, Kaur M, Boricha G, Reddy M (2008) Effects of nacl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas. Biol 63(3):378–382

    CAS  Google Scholar 

  • Li J, Han G, Sun C, Sui N (2019) Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signal behav 14(8):1613131

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lotkowska ME, Tohge T, Fernie AR, Xue G-P, Balazadeh S, Mueller-Roeber B (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169(3):1862–1880

    PubMed  PubMed Central  Google Scholar 

  • Mehar F, Asim M, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Google Scholar 

  • Metsalu T, Vilo J (2015) Clustvis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadhosseini M, Venditti A, Frezza C, Serafini M, Bianco ABM (2021) The genus Haplophyllum Juss.: Phytochemistry and bioactivities. Molecules 26:4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian V (1996) A dictionary of Iranian plant names. Farhang Moaser, Tehran, p 67

    Google Scholar 

  • Ni J, Yang X, Zhu J, Liu Z, Ni Y, Wu H, Zhang H, Liu T (2015) Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. Suspension cells. Plant Cell Tiss Organ Cult (PCTOC) 122(1):239–248

    Article  CAS  Google Scholar 

  • Pérez-Tornero O, Tallón CI, Porras I, Navarro JM (2009) Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. J Plant Physiol 166(17):1923–1933

    Article  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14(7):14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  • Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y (2016) Mechanisms of soybean roots' tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteomics 15(1):266–288

    Article  CAS  PubMed  Google Scholar 

  • Safari F, Akramian M, Salehi-Arjmand H (2020) Physiochemical and molecular responses of salt-stressed lemon balm (Melissa officinalis L.) to exogenous protectants. Acta Physiol Plant 42(2):1–10

    Article  Google Scholar 

  • Salvo G, Manafzadeh S, Ghahremaninejad F, Tojibaev K, Zeltner L, Conti E (2011) Phylogeny, morphology, and biogeography of Haplophyllum (Rutaceae), a species-rich genus of the Irano‐Turanian floristic region. Taxon 60(2):513–527

    Article  Google Scholar 

  • Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B (2021) The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 10(1):118

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankari M, Hridya H, Sneha P, Doss CGP, Christopher JG, Mathew J, Zayed H, Ramamoorthy S (2019) Implication of salt stress induces changes in pigment production, antioxidant enzyme activity, and qRT-PCR expression of genes involved in the biosynthetic pathway of Bixa orellana L. Funct Integr Genomics 19(4):565–574

    Article  CAS  PubMed  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51(3):121–124

    Google Scholar 

  • Sharma A, Kapoor D, Wang J, Landi M, Zheng B, Yan D, Yuan H (2020) Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biol Plant 64:512–518

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Ramawat KG (2013) Salinity-induced modulation of growth and antioxidant activity in the callus cultures of miswak (Salvadora persica). Biotech 3(1):11–17

    Google Scholar 

  • Shin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Lee JG (2020) Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agron 10(11):1627

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Song T, Li K, Wu T, Wang Y, Zhang X, Xu X, Yao Y, Han Z (2019) Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE 14(1):e0210672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava MK, Dwivedi UN (1998) Salicylic acid modulates glutathione metabolism in pea seedlings. Plant Sci 158:87–96

    Article  Google Scholar 

  • Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using griess reaction assay. Sens 3(8):276–284

    Article  CAS  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  Google Scholar 

  • Toghyani MA, Karimi F, Tafreshi SAH, Talei D (2020) Two distinct time dependent strategic mechanisms used by Chlorella vulgaris in response to gamma radiation. J Appl Phycol 32(3):1677–1695

    Article  CAS  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultraviolet-B protection up‐regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34(6):909–921

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Kong W, Wong G, Fu L, Peng R, Li Z, Yao Q (2016) AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genomics 291(4):1545–1559

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu T, Huang J, Lu X, Huang B, Zheng Y (2013) The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance. Int J Mol Sci 14(5):8775–8786

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Gao B, Liu X, Dong X, Zhang Z, Fan H, Zhang L, Wang J, Shi S, Tu P (2016) Salinity stress induces the production of 2-(2-phenylethyl) chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli. BMC Plant Biol 16(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkesman J, Castro D, Contreras LM, Kurz L (2014) Guaiacol peroxidase zymography for the undergraduate laboratory. Biochem Mol Biol Educ 42(5):420–426

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Liu S, Lu Z, Pang S, Wang L, Wang L, Li W (2020) Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 9(9):1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wei X, Shi R, Fan Q, An L (2010) Salinity-induced physiological modification in the callus from halophyte Nitraria tangutorum Bobr. J Plant Growth Regul 29(4):465–476

    Article  CAS  Google Scholar 

  • Yasar F, Uzal O, Yasar O (2013) Determination of antioxidative enzyme activities in callus culture of the salt-tolerant and salt-sensitive watermelon (Citrullus lanatus (Thunb.) Mansf.) genotypes under salt stress. J Food Agric Environ 11(3–4):1437–1440

    CAS  Google Scholar 

  • Zhang H, Wu Z, Suo Y, Wang J, Zheng L, Wang Y (2017) Gene expression and flavonol biosynthesis are induced by ultraviolet-B and salt stresses in Reaumuria trigyna. Biol Plant 61(2):246–254

    Article  CAS  Google Scholar 

  • Zhang P, Wang R, Yang X, Ju Q, Li W, Lü S, Tran LSP, Xu J (2020) The R2R3-MYB transcription factor AtMYB49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ 43(8):1925–1943

    Article  PubMed  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of Reed. Plant Physiol 134(2):849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Q, Wang Y, Xu Y, Li J, Zhao S, Wang D, Ma Z, Yan F, Liu Y (2021) Combined transcriptomic and metabolomic analysis reveals the role of phenylpropanoid biosynthesis pathway in the salt tolerance process of Sophora alopecuroides. Int J Mol Sci 22(5):2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Shahed University (Iran) for its support.

Funding

The necessary facilities for doing this work have been provided by Shahed University and this study was done without receiving any other funding.

Author information

Authors and Affiliations

Authors

Contributions

FK, AS, and KR have supervised the project. MA and FK have designed the experiments. MA has performed the experiments, analyzed the data, and written the primary manuscript. All authors have read and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Farah Karimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies involving animals or human participants as research objects.

Additional information

Communicated by Amita Bhattacharya.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: The article title has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, M., Karimi, F., Saboora, A. et al. NaCl-induced flavonoid biosynthesis and oxidative stress responses in suspension cells of Haplophyllum virgatum var. virgatum. Plant Cell Tiss Organ Cult 154, 311–324 (2023). https://doi.org/10.1007/s11240-023-02455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-023-02455-0

Keywords

Navigation