Skip to main content
Log in

Effects of mammalian sex hormones on regeneration capacity, retrotransposon polymorphism and genomic instability in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Mammalian steroid hormones (MSH) are also inherently synthesized by several plant species. However, external application of steroid hormones further stimulates cell division, pollen germination, plant growth and development. There is little known about the effects of MSH on polymorphism and DNA damage in Triticum aestivum L under in vitro conditions. In this study, inter-primer binding site (iPBS) retrotransposon and coupled restriction enzyme digestion-iPBS (CRED-iPBS) markers were used for detection of the variation in responded embryogenic callus (REC) that were obtained from endosperm-supported mature embryo of wheat in Murashige and Skoog (MS) medium containing different concentrations [0 (control), 10–4, 10–6 and 10–8 m mol L−1] of MSH (progesterone, 17β-estradiol, estrone and testosterone). Responded embryogenic callus (REC) and regenerable callus (RE) induction from mature embryos varied with MSH type and concentrations. The highest level of genomic template stability (GTS) value (80.52%) was obtained from 10–8 mM progesterone treatments to the lowest value (68.83%) from 10–4 mM 17 β-estradiol treatments. Epigenetic changes were more frequent and variable than the genetic changes. While DNA hypermethylation was observed at higher 17 β-estradiol concentrations, DNA hypomethylation was observed in progesterone treatments. It was concluded based on iPBS and CRED-iPBS findings that high MSH concentrations caused DNA changes and methylation.

Key message

Variability among regenerates caused by MSH treatments in different concentration were observed. iPBS polymorphisms indicated the presence of genetic variation among the wheat regenerates. Application of MSH in high concentration had a clearly effective on polymorphism and genomic instability in the wheat mature embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aly AA (2012) Application of DNA (RAPD) and ultrastructure to detect the effect of cadmium stress in Egyptian clover and Sudan grass plantlets. J Stress Physiol Biochem 8(1):241–257

    Google Scholar 

  • Alzohairy AM, Yousef MA, Edris S, Kerti B, Gyulai G, Bahieldin A (2012) Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in Barley (Hordeum vulgare) via RT-qPCR. Life Sci J 9(4):5019–5026

    Google Scholar 

  • Aydin M, Tosun M, Haliloglu K (2011) Plant regeneration in wheat mature embryo culture. Afr J Biotech 10(70):15749–15755

    Article  CAS  Google Scholar 

  • Chi W, Feng P, Ma J, Zhang L (2015) Metabolites and chloroplast retrograde signaling. Curr Opin Plant Biol 25:32–38

    Article  CAS  PubMed  Google Scholar 

  • Citterio S, Aina R, Labra M, Ghiani A, Fumagalli P, Sgorbati S, Santagostino A (2002) Soil genotoxicity assessment: a new strategy based on biomolecular tools and plant bioindicators. Environ Sci Technol 36(12):2748–2753

    Article  Google Scholar 

  • Dadasoglu E, Tosun M (2018) The effect of mammalian sex hormones on in vitro properties of sainfoin (Onobrychis sativa L.). Fresenius Environ Bull 27(11):7222–7229

    CAS  Google Scholar 

  • Doğan İ, Kekeç G, Özyiğit İİ, Sakçalı MS (2012) Salinity induced changes in cotton (Gossypium hirsutum L.). Pak J Bot 44:21–25

    Google Scholar 

  • Dumlupinar R, Genisel M, Erdal S, Korkut T, Taspinar MS, Taskin M (2011) Effects of progesterone, β-estradiol, and androsterone on the changes of inorganic element content in barley leaves. Biol Trace Elem Res 143(3):1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Erdal S (2012) Alleviation of salt stress in wheat seedlings by mammalian sex hormones. J Sci Food Agric 92(7):1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Erdal S, Dumlupinar R (2011) Exogenously treated mammalian sex hormones affect inorganic constituents of plants. Biol Trace Elem Res 143(1):500–506

    Article  CAS  PubMed  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G (2015) Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res 22(13):10291–10297

    Article  CAS  Google Scholar 

  • Grafi G (2004) How cells dedifferentiate: a lesson from plants. Dev Biol 268(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Ben-Meir H, Avivi Y, Moshe M, Dahan Y, Zemach A (2007) Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Dev Biol 306(2):838–846

    Article  CAS  PubMed  Google Scholar 

  • Guo D-L, Guo M-X, Hou X-G, Zhang G-H (2014) Molecular diversity analysis of grape varieties based on iPBS markers. Biochem Syst Ecol 52:27–32

    Article  CAS  Google Scholar 

  • Gupta M, Sarin NB (2009) Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. J Environ Sci 21(5):686–690

    Article  CAS  Google Scholar 

  • Han Z, Crisp PA, Stelpflug S, Kaeppler SM, Li Q, Springer NM (2018) Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics 209(4):983–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinpour A, Özkan G, Nalci Ö, Haliloğlu K (2019) Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turkish J Bot 43(1):27–37

    Article  Google Scholar 

  • Hosseinpour A, Aydin M, Haliloğlu K (2020) Plant regeneration system in recalcitrant rye (Secale cereale L.). Biologia 75(7):1017–1028

    Article  CAS  Google Scholar 

  • Hosseinpour A, Ilhan E, Özkan G, Öztürk Hİ, Haliloglu K, Cinisli KT (2021) Plant growth-promoting bacteria (PGPBs) and copper (II) oxide (CuO) nanoparticle ameliorates DNA damage and DNA Methylation in wheat (Triticum aestivum L.) exposed to NaCl stress. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-021-00713-w

    Article  Google Scholar 

  • Janeczko A (2012) The presence and activity of progesterone in the plant kingdom. Steroids 77(3):169–173

    Article  CAS  PubMed  Google Scholar 

  • Janeczko A, Skoczowski A (2005) Mammalian sex hormones in plants. Folia Histochem Cytobiol 43(2):71–79

    CAS  PubMed  Google Scholar 

  • Kabita KC, Sharma SK, Sanatombi K (2019) Analysis of capsaicinoid biosynthesis pathway genes expression in callus cultures of Capsicum chinense Jacq. cv.’Umorok’. Plant Cell, Tissue Organ Cult 137(3):565–573

    Article  CAS  Google Scholar 

  • Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Sabot F, Rodriguez F, Karlov GI, Natali L, Alix K (2021) mobile elements and plant genome evolution, comparative analyzes and computational tools. Front Plant Sci. https://doi.org/10.3389/fpls.2021.735134

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodaz S, Halİloğlu K, Hosseinpour A, Aydin M (2021) Culture media and growth regulators influence callus induction and plant regeneration of mature embryos of orchardgrass (Dactylis glomerata L.). Turkish J Agric For 45(4):454–464

    Article  CAS  Google Scholar 

  • Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, Muthusamy M, Sajith KP (2017) Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. Plant Cell Rep 36(1):163–178

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Seo PJ (2018) Dynamic epigenetic changes during plant regeneration. Trends Plant Sci 23(3):235–247

    Article  CAS  PubMed  Google Scholar 

  • Lerat E, Casacuberta J, Chaparro C, Vieira C (2019) On the importance to acknowledge transposable elements in epigenomic analyses. Genes 10(4):258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhao X, Dai H, Wu W, Mao W, Zhang Z (2012) Tissue culture responsive microRNAs in strawberry. Plant Mol Biol Report 30(4):1047–1054

    Article  CAS  Google Scholar 

  • Mansour A (2009) Water deficit induction of Copia and Gypsy genomic retrotransposons. Plant Stress 3(1):33–39

    Google Scholar 

  • Milanesi L, Monje P, Boland R (2001) Presence of estrogens and estrogen receptor-like proteins in Solanum glaucophyllum. Biochem Biophys Res Commun 289:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32(2):295–318

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M (2021) The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci 22(21):11387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigmaz B, Agar G, Arslan E, Aydin M, Taspinar MS (2015) The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiol Plant 37(11):251

    Article  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Xia S, Wang R, Xiao L (2017) Phytohormonal quantification based on biological principles. Horm Metabol Signal Plants 13:431–470

    Article  Google Scholar 

  • Tanee T, Chadmuk P, Sudmoon R, Chaveerach A, Noikotr K (2012) Genetic analysis for identification, genomic template stability in hybrids and barcodes of the Vanda species (Orchidaceae) of Thailand. Afr J Biotech 11(55):11772–11781

    CAS  Google Scholar 

  • Tarkowská D (2019) Plants are capable of synthesizing animal steroid hormones. Molecules 24(14):2585

    Article  PubMed  PubMed Central  Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yagci S, Arslan E, Agar G (2018) Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in maize. Arab J Sci Eng 43(1):123–131

    Article  CAS  Google Scholar 

  • Turk H (2021) Progesterone promotes mitochondrial respiration at the biochemical and molecular level in germinating maize seeds. Plants 10(7):1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Türkoğlu A, Tosun M, Haliloğlu K (2022) Evaluation of ethyl methanesulfonate-induced in vitro mutagenesis, polymorphism and genomic instability in wheat (Triticum aestivum L.). J Crop Sci Biotechnol. https://doi.org/10.1007/s12892-022-00172-2

    Article  Google Scholar 

  • Türkoğlu A, Tosun M, Haliloğlu K (2022) Mutagenic effects of sodium azide on in vitro mutagenesis, polymorphism and genomic instability in wheat (Triticum aestivum L.). Mol Biol Rep 49(11):10165–10174

    Article  PubMed  Google Scholar 

  • Uysal P, Bezirganoglu I (2017) Mammalian sex hormones affect regeneration capacity and enzymes activity of Triticale (X triticosecale wittmack) in vitro culture. JAPS, J Anim Plant Sci 27(6):1984–1992

    CAS  Google Scholar 

  • Wachsman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res/fundamen Mol Mech Mutagen 375(1):1–8

    Article  CAS  Google Scholar 

  • Wibowo A, Becker C, Durr J, Price J, Spaepen S, Hilton S, Putra H, Papareddy R, Saintain Q, Harvey S (2018) Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc Natl Acad Sci 115(39):E9145–E9152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeinalzadehtabrizi H, Hosseinpour A, Aydin M, Haliloglu K (2015) A modified genomic DNA extraction method from leaves of sunflower for PCR based analyzes. J Biol Env Sci 7:222–225

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AT conceived and designed the experiments and worked for writing and editing the English of this paper.

Corresponding author

Correspondence to Aras Turkoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Sergio Rosales-Mendoza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkoglu, A. Effects of mammalian sex hormones on regeneration capacity, retrotransposon polymorphism and genomic instability in wheat (Triticum aestivum L.). Plant Cell Tiss Organ Cult 152, 647–659 (2023). https://doi.org/10.1007/s11240-022-02440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02440-z

Keywords

Navigation