Skip to main content
Log in

Abscisic acid is required for cold-induced accumulation of ginsenosides Rg1 and Re in Panax ginseng adventitious roots

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Ginsenosides Rg1 and Re are two major protopanaxatriol-type ginsenosides in Panax ginseng. Dammarendiol synthase (DDS) and protopanaxatriol synthase (PPTS) are the two key enzymes in the biosynthesis of PPT-type ginsenosides. Abscisic acid (ABA) is an important endogenous phytohormone, which is involved in abiotic stress. P. ginseng adventitious roots (PGARs) are attractive resources to be used in stress studies. However, little is known about the role of ABA on ginsenoside biosynthesis in PGARs under cold stress. In the present study, compared to control conditions (25 °C), cold stress (5 °C) induced the accumulation of ginsenosides Rg1 and Re, which was confirmed by increased expression levels of DDS and PPTS genes. Furthermore, cold stress triggered the accumulation of ABA prior to accumulation of ginsenosides Rg1 and Re. The inhibition of ABA biosynthesis with nordihydroguaiaretic acid (NDGA) in cold-exposed PGARs down-regulated expression levels of DDS and PPTS genes, and suppressed the accumulation of ginsenosides Rg1 and Re; whereas exogenous addition of ABA to NDGA-treated PGARs restored expression levels of DDS and PPTS genes, and accumulation of ginsenosides Rg1 and Re, respectively. These results indicated that ABA participation in the synthesis of ginsenosides Rg1 and Re under cold stress in PGARs. In addition, ABA treatment efficiently triggered accumulation of ginsenosides Rg1 and Re in PGARs in concentration-dependent manner at 25 °C, reaching a maximum value at 100 uM ABA, which was 2.0-fold higher than that of the control. Therefore, ABA can be used as an elicitor for the production of ginsenosides Rg1 and Re in PGARs.

Key message

Abscisic acid (ABA) was involved in cold-induced accumulation of ginsenosides Rg1 and Re in P. ginseng adventitious roots (PGARs), and exogenous application of ABA efficiently promoted accumulation of ginsenosides Rg1 and Re in PGARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DDS:

Dammarendiol synthase

DW:

Dry weight

IBA:

Indole-3-butyric acid

MS:

Murashige & Skoog

NDGA:

Nordihydroguaiaretic acid

PGARs:

Panax ginseng adventitious roots

PPD:

Protopanaxadiol

PPT:

Protopanaxatriol

PPTS:

Protopanaxatriol synthase

ROS:

Reactive oxygen species

References

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2005) Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng C.A. Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Sci 169:83–92

    CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek KY (2006a) Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Rep 25:1122–1132

    CAS  PubMed  Google Scholar 

  • Ali MB, Yu KW, Hahn EJ, Paek KY (2006b) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 25:613–620

    CAS  PubMed  Google Scholar 

  • Ali MB, Dewir YH, Hahn EJ, Paek KY (2008) Effect of carbon dioxide on antioxidant enzymes and ginsenoside production in root suspension cultures of Panax ginseng. Environ Exp Bot 63:297–304

    CAS  Google Scholar 

  • Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457

    CAS  PubMed  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59

    PubMed  Google Scholar 

  • Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH (2003) Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 473:1–7

    CAS  PubMed  Google Scholar 

  • Chen F, Luo J, Kong L (2012) Fast isolation of ginsenosides Re and Rg1 from the roots of Panax ginseng by HSCCC-ELSD combined with MCI gel CC guided by HPLC-MS. J Liq Chromatogr Related Technol 35:912–923

    CAS  Google Scholar 

  • Chinese Pharmacopoeia Commission (2020) Panax ginseng. Pharmacopoeia of the People’s Republic of China, part I (Chinese). China Medical Science Press, Beijing, pp 8–9

    Google Scholar 

  • Devi BR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, Yang DC (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59:318–325

    CAS  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810

    CAS  PubMed  Google Scholar 

  • González-Villagra J, Kurepin LV, Reyes-Díaz MM (2017) Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. Planta 246:299–312

    PubMed  Google Scholar 

  • Grant OM, Brennan DP, Mellisho Salas CD, Dix PJ (2014) Impact of enhanced capacity to scavenge reactive oxygen species on cold tolerance of tobacco. Int J Plant Sci 175:544–554

    CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662

    CAS  PubMed  Google Scholar 

  • Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52:2062–2073

    CAS  PubMed  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53:1535–1545

    CAS  PubMed  Google Scholar 

  • Hou M, Wang R, Zhao S, Wang Z (2021) Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 11:1813–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Qian ZG, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N’-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    CAS  PubMed  Google Scholar 

  • Huang X, Chen MH, Yang LT, Li YR, Wu JM (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64

    CAS  Google Scholar 

  • Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J (2017) ABA is involved in regulation of cold stress response in Bermudagrass. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01613

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MH, Jaafar HZ (2013) Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth. Molecules 18:7956–7976

    Google Scholar 

  • Jiang M, Liu J, Quan X, Quan L, Wu S (2016) Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiol Plant 38:1–8

    Google Scholar 

  • Kang KB, Jayakodi M, Lee YS, Nguyen VB, Park HS, Koo HJ, Choi IY, Kim DH, Chung YJ, Ryu B, Lee DY, Sung SH, Yang TJ (2018) Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng. Sci Rep. https://doi.org/10.1038/s41598-018-30262-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiefer D, Pantuso T (2003) Panax ginseng. Am Fam Physician 68:1539–1542

    PubMed  Google Scholar 

  • Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnol Lett 26:1619–1622

    CAS  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Turečková V, Rolčik J, Pešek B, Trávničková A, Gaudinová A, Galiba G, Janda T, Vlasáková E, Prášilová P, Vanková R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    PubMed  Google Scholar 

  • Kumar S, Kaur G, Nayyar H (2008) Exogenous application of abscissic acid improves cold tolerance in chickpea (Cicer arietinum L.). J Agron Crop Sci 194:449–456

    CAS  Google Scholar 

  • Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349

    PubMed  PubMed Central  Google Scholar 

  • Li D, Xu G, Ren G, Sun Y, Huang Y, Liu C (2017) The application of ultra-high-performance liquid chromatography coupled with a LTQ-Orbitrap mass technique to reveal the dynamic accumulation of secondary metabolites in licorice under ABA stress. Molecules. https://doi.org/10.3390/molecules22101742

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W (2016) Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey. J Biotechnol 239:106–114

    CAS  PubMed  Google Scholar 

  • Liu J, Lan X, Bao R, Yuan Y, Wu S, Quan X (2019) Salicylic acid involved in chilling-induced accumulation of calycosin-7-O-β-D-glucoside in Astragalus membranaceus adventitious roots. Acta Physiol Plant 41:120

    Google Scholar 

  • Lu J, Li JX, Wang SH, Yao L, Liang WX, Wang J, Gao WY (2018) Advances in ginsenoside biosynthesis and metabolic regulation. Biotechnol Appl Biochem 65:514–522

    CAS  PubMed  Google Scholar 

  • Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance-different tiers of regulation. J Plant Physiol 171:486–496

    CAS  PubMed  Google Scholar 

  • Murcia G, Fontana A, Pontin M, Baraldi R, Bertazza G, Piccoli PN (2017) ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry 135:34–52

    CAS  PubMed  Google Scholar 

  • Murthy HN, Dandin VS, Paek KY (2014) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15:1–17

    Google Scholar 

  • Nagira Y, Ikegami K, Koshiba T, Ozeki Y (2006) Effect of ABA upon anthocyanin synthesis in regenerated torenia shoots. J Plant Res 119:137–144

    CAS  PubMed  Google Scholar 

  • Nazari M, Maali Amiri R, Mehraban FH, Khaneghah HZ (2012) Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russ J Plant Physiol 59:183–189

    CAS  Google Scholar 

  • Ning C, Gao X, Wang C, Huo X, Liu Z, Sun H, Yang X, Sun P, Ma X, Meng Q, Liu K (2018) Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice. Environ Toxicol 33:1050–1060

    CAS  PubMed  Google Scholar 

  • Niranjana Murthy H, Dandin VS, Yoeup Paek K (2014) Hepatoprotective activity of ginsenosides from Panax ginseng adventitious roots against carbon tetrachloride treated hepatic injury in rats. J Ethnopharmacol 158:442–446

    CAS  PubMed  Google Scholar 

  • Oh JY, Kim YJ, Jang MG, Joo SC, Kwon WS, Kim SY, Jung SK, Yang DC (2014) Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 38:270–277

    PubMed  PubMed Central  Google Scholar 

  • Pareek A, Khurana A, Sharma AK, Kumar R (2017) An overview of signaling regulons during cold stress tolerance in plants. Curr Genom 18:498–511

    CAS  Google Scholar 

  • Paul S, Shin HS, Kang SC (2012) Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 50:1354–1361

    CAS  PubMed  Google Scholar 

  • Posmyk MM, Bailly C, Szafrańska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162:403–412

    CAS  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi S, Kim YJ, Devi BSR, Oh JY, Kim SY, Kwon WS, Yang DC (2015) Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Res Chem Intermed 42:2937–2951

    Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    CAS  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    CAS  PubMed  Google Scholar 

  • Shen X, Zhao K, Liu L, Zhang K, Yuan H, Liao X, Wang Q, Guo X, Li F, Li T (2014) A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol 55:862–880

    CAS  PubMed  Google Scholar 

  • Song X, Wu H, Yin Z, Lian M, Yin C (2017) Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules. https://doi.org/10.3390/molecules22060837

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stress: a delicate balance between signalling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Tansakul P, Shibuya M, Kushiro T, Ebizuka Y (2006) Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Lett 580:5143–5149

    CAS  PubMed  Google Scholar 

  • Tewari RK, Paek KY (2011) Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. J Plant Growth Regul 30:396–404

    CAS  Google Scholar 

  • Um Y, Lee Y, Kim SC, Jeong YJ, Kim GS, Choi DW, Cha SW, Kim OT (2017) Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis. Hortic Environ Biotechnol 58:376–383

    CAS  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li J, Wang J, Li Z (2010) Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidative system. Plant Growth Regul 61:195–204

    CAS  Google Scholar 

  • Wang J, Gao WY, Zuo BM, Liu H, Zhang LM, Huang LQ (2012) Gradually scale-up culture in a bioreactor promotes radical scavenging activity of Panax ginseng (C A. Meyer) adventitious roots on 1,1-diphenyl-2-picrylhydrazyl. Plant Growth Regul 67:101–105

    CAS  Google Scholar 

  • Wang J, Gao W, Zuo B, Zhang L, Huang L (2013) Effect of methyl jasmonate on the ginsenoside content of Panax ginseng adventitious root cultures and on the genes involved in triterpene biosynthesis. Res Chem Intermed 39:1973–1980

    CAS  Google Scholar 

  • Wang J, Wang S, Liu G, Edwards EJ, Duan W, Li S, Wang L (2016) The synthesis and accumulation of resveratrol are associated with veraison and abscisic acid concentration in Beihong (Vitis vinifera × Vitis amurensis) berry skin. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01605

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Liu X, Zhang B, Xie Z, Hou Z, Yang Z (2015) Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade. J Ginseng Res 39:81–88

    CAS  PubMed  Google Scholar 

  • Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Shi Z, Liu S, Li J, Huang W (2014a) Ginsenosides Rg1 from Panax ginseng: a potential therapy for acute liver failure patients? Evid-Based Complement Altern Med. https://doi.org/10.1155/2014/538059

    Article  Google Scholar 

  • Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J (2014b) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33:393–400

    CAS  PubMed  Google Scholar 

  • Zhu M, Assmann SM (2017) Metabolic signatures in response to abscisic acid (ABA) treatment in Brassica napus guard cells revealed by metabolomics. Sci Rep. https://doi.org/10.1038/s41598-017-13166-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Biochem 73:427–433

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Jilin Province of China (YD ZJ202101ZYTS197).

Author information

Authors and Affiliations

Authors

Contributions

JL and YY prepared materials and detected the ginsenosides Rg1 and Re. JL and WJ measured the ROS and ABA contents. SW performed gene expressions. XQ analyzed the data. SW and WW designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Songquan Wu or Welin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Communicated by Ali R. Alan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Secondary Metabolites and Medicinal Plant Biotechnology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yuan, Y., Jiang, W. et al. Abscisic acid is required for cold-induced accumulation of ginsenosides Rg1 and Re in Panax ginseng adventitious roots. Plant Cell Tiss Organ Cult 149, 325–333 (2022). https://doi.org/10.1007/s11240-021-02222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02222-z

Keywords

Navigation