Skip to main content
Log in

Advances in potato functional genomics: implications for crop improvement

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Potato is one of the most important crops grown worldwide. The potato genome sequencing consortium has identified large numbers of genes having unknown functionality. To systematically assign functions to all predicted genes in its genome and their specific applications in potato improvement, different techniques have been developed over the years to generate mutants and analyze phenotypic variations among existing varieties. The generation of mutants could result in elucidating the function of genes and help in developing superior crop cultivars, thereby improving potato quality for future feed. In this review article, we have summarized various loss of function and gain of function genetic tools, which could be used for modifying or designing new strategies for the molecular engineering of potatoes. Moreover, the advantages and limitations of these tools suitable for mining genomic data have been discussed. This comprehensive summary could lay the foundation for the genetic improvement of potatoes towards food and nutritional security.

Key message

Functional genomics provides a better understanding of deciphering new experimental opportunities for developing nutritionally rich potato varieties in combating hidden hunger and developing new breeding programs for its improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, Kumar J (2020) The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci 11:264. https://doi.org/10.3389/fpls.2020.00264

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält AS, Olsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384

    CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, Perry JN, Sweet JB, Taning CNT, Smagghe G et al (2020) Biosafety of GM crop plants expressing dsRNA: data requirements and EU regulatory considerations. Front Plant Sci 11:940

    PubMed  PubMed Central  Google Scholar 

  • Aulakh SS, Veilleux RE, Dickerman AW, Tang G, Flinn BS (2014) Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant. Plant Mol Biol 84:635–658

    CAS  PubMed  Google Scholar 

  • Aulakh SS, Veilleux RE, Tang G, Flinn BS (2015) Characterization of a potato activation tagged mutant, nikku, and its partial revertant. Planta 241(6):1481–1495

    CAS  PubMed  Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    CAS  PubMed  Google Scholar 

  • Bánfalvi Z, Csákvári E, Villányi V, Kondrák M (2020) Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation. BMC Biotechnol 20:25

    PubMed  PubMed Central  Google Scholar 

  • Bao S, Owens RA, Sun Q, Song H, Liu Y, Eamens AL et al (2019) Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog 15(12):e1008110

    PubMed  PubMed Central  Google Scholar 

  • Becker A, Lange M (2010) VIGS genomics goes functional. Trends Plant Sci 15:1–4

    CAS  PubMed  Google Scholar 

  • Bhaskar PB, Venkateshwaran M, Wu L, Ane JM, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE 4(6):e5812

    PubMed  PubMed Central  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    CAS  PubMed  Google Scholar 

  • Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN or CRISPR. Mol Cell 58(4):575–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brigneti G, Martín-Hernández AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39(2):264–272

    CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39(5):734–746

    CAS  PubMed  Google Scholar 

  • Busov V, Yordanov Y, Gou J, Meilan R, Ma C, Regan S, Strauss S (2011) Activation tagging is an effective gene tagging system in Populus. Tree Genet Genomes 7:91–101

    Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:e0144591

    PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobnik D, Lazar A, Stare T, Gruden K, Vleeshouwers VGAA, Žel J (2016) Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods 12:29

    PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1077–1093

    CAS  Google Scholar 

  • Du J, Tian Z, Liu J, Vleeshouwers VG, Shi X, Xie C (2013) Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 40(2):957–967

    CAS  PubMed  Google Scholar 

  • Duangpan S, Zhang W, Wu Y, Jansky SH, Jiang J (2013) Insertional mutagenesis using Tnt1 retrotransposon in potato. Plant Physiol 163:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubrovina AS, Aleynova OA, Kalachev AV, Suprun AR, Ogneva ZV, Kiselev KV (2019) Induction of transgene suppression in plants via external application of synthetic dsRNA. Int J Mol Sci 7:1585

    Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eck JV, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. Am J of Potato Res 84:331–342

    Google Scholar 

  • Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes 2:141

    PubMed  PubMed Central  Google Scholar 

  • Eschen-Lippold L, Landgraf R, Smolka U, Schulze S, Heilmann M, Heilmann I, Hause G, Rosahl S (2012) Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytol 193(4):985–996

    CAS  PubMed  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira SJ, Senning M, Sonnewald S, Kessling PM, Goldstein R, Sonnewald U (2010) Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genom 11:93

    Google Scholar 

  • Fizikova A, Tikhonova N, Ukhatova Y, Ivanov R, Khlestkina E (2021) Applications of CRISPR/Cas9 system in vegetatively propagated fruit and berry crops. Agronomy 11:1849

    CAS  Google Scholar 

  • Fondong VN, Nagalakshmi U, Dinesh-Kumar SP (2016) Novel functional genomics approaches: a promising future in the combat against plant viruses. Phytopathology 106(10):1231–1239

    CAS  PubMed  Google Scholar 

  • Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7:1572

    PubMed  PubMed Central  Google Scholar 

  • Fritsch C, Staebler A, Happel A, Márquez MAC, Aguiló-Aguayo I et al (2017) Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9:1492

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gebremichael DE, Haile ZM, Negrini F, Sabbadini S, Capriotti L, Mezzetti B, Baraldi E (2021) RNA interference strategies for future management of plant pathogenic fungi: prospects and challenges. Plants 10:650. https://doi.org/10.3390/plants10040650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genom 9(2):103–110

    CAS  Google Scholar 

  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci 10:1649

    PubMed  PubMed Central  Google Scholar 

  • Guo Q, Liu Q, Smith NA, Liang G, Wang MB (2016) RNA silencing in plants: mechanisms, technologies and applications in horticultural crops. Curr Genom 17(6):476–489

    CAS  Google Scholar 

  • Hameed A, Tahir MN, Asad S, Bilal R, Eck JV, Jander G, Mansoor S (2017) RNAi-mediated simultaneous resistance against three RNA viruses in potato. Mol Biotechnol 59:73–83

    CAS  PubMed  Google Scholar 

  • Hayashi H, Czaja I, Lubenow H, Schell J, Walden R (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258(5086):1350–1353

    CAS  PubMed  Google Scholar 

  • Hussain T, Aksoy E, Çalışkan ME, Bakhsh A (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, say). Transgenic Res 28(1):151–164

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Lizumi H, Goto Y, Matsui M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation—tagging lines that showed phenotypes in T1 generation. Plant J 36:421–429

    CAS  PubMed  Google Scholar 

  • Jahan SN, Åsman AKM, Corcoran P, Fogelqvist J, Vetukuri RR, Dixelius C (2015) Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans. J Exp Bot 66(9):2785–2794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP (2017) An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 232:22–33

    CAS  PubMed  Google Scholar 

  • Johansen IE, Liu Y, Jørgensen B, Bennett EP, Andreasson E, Nielsen KL, Blennow A, Petersen BL (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715. https://doi.org/10.1038/s41598-019-54126-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274(5289):982–985

    CAS  PubMed  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    PubMed  PubMed Central  Google Scholar 

  • Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:4487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Chandrasegaran S (1994) Chimeric restriction endonuclease. PNAS 91:883–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93(3):1156–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolakar SS, Nadukeri S, Jakkeral SA, Lakshmana D, Hanumanthappa M, Gangaprasad S (2018) Role of mutation breeding in improvement of medicinal and aromatic crops: review. J Pharmacogn Phytochem SP3:425–429

    Google Scholar 

  • Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Shimada H (2016) A simple gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kutscher LM, Shaham S (2014) Forward and reverse mutagenesis in C. elegans. WormBook 17:1–26

    Google Scholar 

  • Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther-Nucleic Acids 4:252

    Google Scholar 

  • Li L, Wu LP, Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. PNAS 89:4275–4279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HZ, Zhou WJ, Zhang ZJ, Gu HH, Takeuchi Y, Yoneyama K (2005) Effect of γ-radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biol Plant 49(4):625–628

    CAS  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39(1):359–372

    PubMed  Google Scholar 

  • Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J (2013) A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. Plant Physiol Biochem 67:41–47

    CAS  PubMed  Google Scholar 

  • Liu W, Stewart CN Jr (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    PubMed  Google Scholar 

  • Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sinica B 7(3):292–302

    Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. PNAS 102:2232–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Xiang H, Donnelly DJ, Meng FR, Xu H, Durnford D, Li XQ (2017) Genome editing in potato plants by Agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol Rep 11:249–258

    Google Scholar 

  • Majumdar R, Rajasekaran K, Cary JW (2017) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200. https://doi.org/10.3389/fpls.2017.00200

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    CAS  PubMed  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21

    PubMed  PubMed Central  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genom 9(2):111–117

    CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    CAS  PubMed  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    CAS  Google Scholar 

  • Moin M, Bakshi A, Maheswari M, Kirti PB (2017) Small interfering RNA-mediated regulation of gene expression and its role as a plant reverse genetic tool. Ind J Plant Physiol 22(4):549–557

    CAS  Google Scholar 

  • Muth J, Hartje S, Twyman RM, Hofferbert HR, Tacke E, Prüfer D (2008) Precision breeding for novel starch variants in potato. Plant Biotechnol J 6:576–584

    CAS  PubMed  Google Scholar 

  • Nayak CA, Suguna K, Narasimhamurthy K, Rastogi NK (2007) Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. J Food Eng 79(3):765–770

    Google Scholar 

  • Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    CAS  PubMed  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16

    CAS  Google Scholar 

  • O’Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertional mutant collections. Methods Mol Biol 1284:323–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. PNAS 107:12034–12039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    CAS  PubMed  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817

    CAS  PubMed  Google Scholar 

  • Penna S, Jain SM (2017) Mutant resources and mutagenomics in crop plants. Emir J Food Agric 29(9):651–657

    Google Scholar 

  • Petek M, Coll A, Ferenc R, Razinger J, Gruden K (2020) Validating the potential of double-stranded RNA targeting Colorado potato beetle mesh gene in laboratory and field trials. Front Plant Sci 11:1250

    PubMed  PubMed Central  Google Scholar 

  • Plantenga FDM, Bergonzi S, Abelenda JA, Bachem CWB, Visser RGF, Heuvelink E, Marcelis LFM (2019) The tuberization signal StSP6A represses flower bud development in potato. J Exp Bot 70(3):937–948

    CAS  PubMed  Google Scholar 

  • Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol 8:1

    Google Scholar 

  • Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323

    PubMed  PubMed Central  Google Scholar 

  • Regan S, Gustafson V, Rothwell C, Sardana R, Flinn B, Mallubhotla S, Bagchi M, Siahbazi M, Chakravarty B, Wang-Pruski G, Goyer C, Audy P, Li X-Q, De Koeyer D (2006) Finding the perfect potato: using functional genomics to improve disease resistance and tuber quality traits. Can J Plant Path 28:S247–S255

    CAS  Google Scholar 

  • Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9:36

    PubMed  PubMed Central  Google Scholar 

  • Salaria N, Siddappa S, Thakur K, Tomar M, Goutam U, Sharma N, Sood S, Bhardwaj V, Singh B (2020) Solanum tuberosum (Cycling DOF Factor) CDF1.2 allele: a candidate gene for developing earliness in potato. S Afr J Bot 132:242–248

    CAS  Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genom 15:697–706

    CAS  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:12

    Google Scholar 

  • Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562

    CAS  PubMed  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    CAS  PubMed  Google Scholar 

  • Siddappa S, Tiwari JK, Sindhu R, Sharma S, Bhardwaj V, Chakrabarti SK, Singh BP (2014) Phytophthora infestans associated global gene expression profile in a late blight resistant Indian potato cv. Kufri Girdhari. Aust J Crop Sci 8:215–222

    Google Scholar 

  • Singh A, Siddappa S, Bhardwaj V, Singh B, Kumar D, Singh BP (2015) Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem 97:108–116

    CAS  PubMed  Google Scholar 

  • Singh B, Kukreja S, Goutam U (2018) Milestones achieved in response to drought stress through reverse genetic approaches. F1000Res 7:1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    CAS  PubMed  Google Scholar 

  • Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11

    CAS  PubMed  Google Scholar 

  • Sundaresha S, Sharma S, Bairwa A, Tomar M, Kumar R, Bhardwaj, V, Jeevlatha A, Bakade R, Salaria N, Thakur K, Singh BP, Chakrabarti SK (2021) Spraying of dsRNA molecules derived from Phytophthora infestans, as a plant protection strategies for the management of potato late blight. Preprint at https://arxiv.org/abs/quant-ph/2021020280

  • Tadele Z (2016) Mutagenesis and TILLING to dissect gene function in plants. Curr Genom 17:499–508

    CAS  Google Scholar 

  • Thakur A, Sanju S, Siddappa S, Srivastava N, Shukla PK, Pattanayak D, Sharma S, Singh BP (2015) Artifical microRNA mediated gene silencing of Phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathol J 14(1):1–12

    CAS  Google Scholar 

  • Tiwari JK, Devi S, Sundaresha S, Chandel P, Ali N, Singh B, Bhardwaj V, Singh BP (2015) Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum. Genome 58(6):305–313

    CAS  PubMed  Google Scholar 

  • Tomar G, Chakrabarti SK, Sharma NN, Jeevalatha A, Sundaresha S, Vyas K, Azmi W (2018) RNAi-based transgene conferred extreme resistance to the geminivirus causing apical leaf curl disease in potato. Plant Biotechnol Rep 12:195

    Google Scholar 

  • Tomar M, Sundaresha S, Singh B, Bhardwaj V, Sood S, Singh B, Salaria N, Thakur K, Kumar A, Sharma N, Goutam U (2021) Validation of molecular response of tuberization in response to elevated temperature by using a transient virus induced gene silencing (VIGS) in potato. Funct Integr Genom 21:215–229

    CAS  Google Scholar 

  • Tomoko TM, Hidemitsu N, Makoto H, Hiroaki I (2010) Rice transgenic resources with gain of function phenotypes. Breed Sci 60:493–501

    Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156(3):1257–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unniyampurath U, Pilankatta R, Krishnan MN (2016) RNA interference in the age of CRISPR: will CRISPR interfere with RNAi? Int J Mol Sci 17:291

    PubMed  PubMed Central  Google Scholar 

  • Veillet F, Kermarrec MP, Chauvin L, Guyon-Debast A, Chauvin JE, Gallois JL, Nogué F (2020) Prime editing is achievable in the tetraploid potato, but needs improvement. BioRxiv. https://doi.org/10.1101/2020.06.18.159111

    Article  Google Scholar 

  • Vetukuri RR, Dubey M, Kalyandurg PB, Carlsson AS, Whisson SC, Ortiz R (2021) Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control. Crop Breed Appl Biotechnol 21(S):e387921S11

    CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    CAS  PubMed  Google Scholar 

  • Wang M, Jin H (2017) Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol 25(1):4–6

    CAS  PubMed  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167:751–760

    CAS  PubMed  Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Changyin Wu (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6(3):596–604

    CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    CAS  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    CAS  PubMed  Google Scholar 

  • www.cipotato.org. Accessed 28 May 2019

  • www.fao.org/faostat. Accessed 30 Oct 2021

  • Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    PubMed  PubMed Central  Google Scholar 

  • Xu X, Pan S, Cheng S, Zhang B, Mu D et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    CAS  PubMed  Google Scholar 

  • Yasumoto S, Umemoto N, Lee HJ, Nakayasu M, Sawai S, Sakuma T, Yamamoto T, Mizutani M, Saito K, Muranaka T (2019) Efficient genome engineering using platinum TALEN in potato. Plant Biotechnol 36(3):167–173

    CAS  Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654

    CAS  PubMed  Google Scholar 

  • Zaheer K, Akhtar MH (2016) Potato production, usage, and nutrition—a review. Crit Rev Food Sci Nutr 56(5):711–721

    CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Raboanatahiry N, Zhu B, Li M (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177. https://doi.org/10.3389/fpls.2017.00177

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Andersson M, Andersson R (2018) Resistant starch and other dietary fiber components in tubers from a high amylose potato. Food Chem 251:58–63

    CAS  PubMed  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Potato Research Institute, Shimla for providing the necessary research facilities.

Funding

Science and Engineering Research Board, Department of Science & Technology (DST), Government of India, has funded the project in the form of a National-Post Doctoral Fellowship to Neha Sharma (PDF/2017/000131).

Author information

Authors and Affiliations

Authors

Contributions

NSh, SS conceived and conceptualized the article. VIGS, SIGS, TILLING, Activation tagging were reviewed by NSh and NM. RNAi was reviewed by SS, KT and NS. Mutagenesis and Genome editing techniques were reviewed by NSh, SS and VB. Final compilation and editing were done by NSh and SS. All authors read and approved the manuscript.

Corresponding author

Correspondence to Neha Sharma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Joyce Van Eck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Siddappa, S., Malhotra, N. et al. Advances in potato functional genomics: implications for crop improvement. Plant Cell Tiss Organ Cult 148, 447–464 (2022). https://doi.org/10.1007/s11240-021-02221-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02221-0

Keywords

Navigation