Skip to main content
Log in

Functional divergence of RrGL3 and RrEGL3 from Rosa roxburghii in mediating trichome development

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The basic helix-loop-helix (bHLH) proteins GL3 (GlABRA 3) and EGL3 (Enhancer of GLABRA 3) are transcription factors that establish physical interactions with GL1 and TTG1 to regulate trichome development in Arabidopsis. In this study, we identified GL3 and EGL3 homologous genes from Rosa roxburghii, named RrGL3 and RrEGL3, respectively. RrGL3 and RrEGL3 were both exclusively localized in the nucleus. Transcriptional profiling and in situ hybridization demonstrated that the expression level of RrEGL3 was significantly higher than RrGL3 in vegetative and reproductive tissues. Moreover, RrEGL3 was remarkably expressed in flower buds and the prickles of young fruits. Notably, overexpression of RrEGL3 produced significantly more trichomes compared with wild type. Besides, RrEGL3 was able to functionally complement the glabrous phenotype of gl3 egl3 and ttg1 mutants. Surprisingly, overexpression of RrGL3 did not influence trichome patterning in Arabidopsis. Finally, while RrEGL3 was found to interact with both TTG1 and GL1 in vitro and in vivo, in contrast, RrGL3 only interacted with GL1. The inability of RrGL3 to interact with TTG1 suggests functional divergence between RrGL3 and RrEGL3. These results illustrated that highly expressed RrEGL3 mediates trichome development in Arabidopsis by forming a GL1-RrEGL3-TTG1 complex, proposing RrEGL3 as a good candidate for controlling prickles in R. roxburghii. This study provides insights into the molecular mechanisms concerning the development of prickles in the Rosaceae family, and provides the theoretical basis for cultivation of prickle-free fruits.

Key message

RrEGL3 expressed highly in tissues presenting prickles of Rosa roxburghii could mediated trichome development in Arabidopsis by forming GL1-RrEGL3-TTG1 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The sequences of GL3 and EGL3 have been submitted to NCBI under the accession number Genbank: MT302764 and Genbank: MT302765, respectively.

References

  • Angel PM, Mehta A, Norris-Caneda K, Drake RR (2017) MALDI imaging mass spectrometry of N-glycans and tryptic peptides from the same formalin-fixed, paraffin-embedded tissue section. Methods Mol Biol 1788:225–241

    Article  CAS  Google Scholar 

  • Balkunde R, Bouyer D, Hulskamp M (2011) Nuclear trapping by GL3 controls intercellular transport and redistribution of TTG1 protein in Arabidopsis. Development 138(22):5039–5048

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130(26):6431–6439

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt C, Zhao M, Gonzalez A, Lloyd A, Schiefelbein J (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132(2):291–298

    Article  CAS  PubMed  Google Scholar 

  • Cui J, You C, Zhu E, Huang Q, Ma H, Chang F (2016) Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28(5):1078–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esch JJ, Chen M, Sanders M, Hillestad M, Ndkium S, Idelkope B, Neizer J, Marks MD (2003) A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130(24):5885–5894

    Article  CAS  PubMed  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747

    Article  CAS  PubMed  Google Scholar 

  • Hibrand Saint-Oyant L, Ruttink T, Hamama L, Kirov I, Lakhwani D, Zhou NN, Bourke PM, Daccord N, Leus L, Schulz D, Van de Geest H, Hesselink T, Van Laere K, Debray K, Balzergue S, Thouroude T, Chastellier A, Jeauffre J, Voisine L, Gaillard S, Borm TJA, Arens P, Voorrips RE, Maliepaard C, Neu E, Linde M, Le Paslier MC, Berard A, Bounon R, Clotault J, Choisne N, Quesneville H, Kawamura K, Aubourg S, Sakr S, Smulders MJM, Schijlen E, Bucher E, Debener T, De Riek J, Foucher F (2018) A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat Plants 4:12

    Article  CAS  Google Scholar 

  • Huang X, Chen T, Zhang Q, Mo J, Gong P, Yan H (2020) Cloning, phylogenic and expression analysis of GL2 homology gene in Rosa roxburghii. Guihaia 40(1):119–127

    Google Scholar 

  • Huang X, Yan H, Zhai L, Yang Z, Yi Y (2019a) Characterization of the Rosa roxburghii Tratt transcriptome and analysis of MYB genes. PLoS ONE 14(3):e0203014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Yan H, Zhai L, Yi Y (2019b) GLABROUS1 from Rosa roxburghii Tratt regulates trichome formation by interacting with the GL3/EGL3 protein. Gene 692:60–67

    Article  CAS  PubMed  Google Scholar 

  • Hung FY, Chen JH, Feng YR, Lai YC, Yang S, Wu K (2020) Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3. Plant J 103:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Kawakatsu Y, Nakayama H, Kaminoyama K, Igarashi K, Yasugi M, Kudoh H, Nagano AJ, Yano K, Kubo N, Kimura S (2017) A GLABRA1 ortholog on LG A9 controls trichome number in the Japanese leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey): evidence from QTL analysis. J Plant Res 130(3):539–550

    Article  CAS  PubMed  Google Scholar 

  • Kelloggallicia A, Branamantatum J, Jonesnathan M, Littlecoleman Z, Swanson JD (2011) Morphological studies of developing Rubus prickles suggest that they are modified glandular trichomes. Botany-Botanique 89(4):217–226

    Article  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238(1–2):106–119

    Article  CAS  PubMed  Google Scholar 

  • Larkin JC, Oppenheimer DG, Lloyd AM, Paparozzi ET, Marks MD (1994) Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6(8):1065–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin JC, Walker JD, Bolognesi-Winfield AC, Gray JC, Walker AR (1999) Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana. Genetics 151(4):1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Wu J, Gan L, Yang Q, Liu C, Chen M, Zhou Y, Cahoon EB, Zhang C (2018) Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. Plant Biotechnol J 16(2):591–602

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wang Y, Zhang H, Sun W, Li Z, Zhang F, Zhang H, Chen F, Zhang H, An J, He C (2020) Antimicrobial mechanism of strictinin isomers extracted from the root of Rosa roxburghii Tratt (Ci Li Gen). J Ethnopharmacol 250:112498

    Article  CAS  PubMed  Google Scholar 

  • Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA (2009) Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2(4):803–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5(2):e1000396. https://doi.org/10.1371/journal.pgen.1000396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohashi K, Zhao M, Yang M, Read B, Lloyd A, Lamb R, Grotewold E (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol 145(3):736–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74(3):435–447

    Article  CAS  PubMed  Google Scholar 

  • Pesch M, Schultheiss I, Klopffleisch K, Uhrig JF, Koegl M, Clemen CS, Simon R, Weidtkamp-Peters S, Hulskamp M (2015) TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis. Plant Physiol 168(2):584–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11(6):274–280

    Article  CAS  PubMed  Google Scholar 

  • Shangguan XX, Yang CQ, Zhang XF, Wang LJ (2016) Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant 158(2):200–212

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJ, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW Jr, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Szymanski DB, Jilk RA, Pollock SM, Marks MD (1998) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125(7):1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Wang X, Guo H, Cheng Y, Hou C, Chen JG, Wang S (2017) NTL8 regulates trichome formation in Arabidopsis by directly activating R3 MYB genes TRY and TCL1. Plant Physiol 174(4):2363–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga-Wada R, Iwata M, Okada K, Wada T (2007) Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis. Plant Cell 19(7):2264–2277

    Article  CAS  Google Scholar 

  • Tominaga-Wada R, Masakane A, Wada T (2018) Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato. Plant Signal Behav 13(6):e1477907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga-Wada R, Nukumizu Y, Sato S, Wada T (2013) Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor. PLoS ONE 8(1):e54019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Onishi M, Kunihiro A, Tominaga-Wada R (2015) Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel. Plant Signal Behav 10(5):e1000131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Li C, Huang Q, Fu X (2019) Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells. Food Funct 10(2):539–553

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li C, Huang Q, Fu X (2020) Polysaccharide from Rosa roxburghii Tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice. J Agric Food Chem 68(1):147–159

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang B, Xiao J, Huang Q, Li C, Fu X (2018) Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem 249:127–135

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Li Y, Qi T, Gao H, Liu B, Zhang M, Huang H, Song S (2018) The C-terminal domains of Arabidopsis GL3/EGL3/TT8 interact with JAZ proteins and mediate dimeric interactions. Plant Signal Behav 13(1):e1422460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Katz A, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12(12):2367–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhan J, Liu M, Pan L, He L, Guo Y (2019) Oxidative stress and TGF-beta1/Smads signaling are involved in rosa roxburghii fruit extract alleviating renal fibrosis. Evid Based Complement Alternat Med 2019:4946580

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wang X, Zhu D, Cui S, Li X, Cao Y, Ma L (2012) A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. J Bio Chem 287(17):14109–14121

    Article  CAS  Google Scholar 

  • Zhang C, Ma R, Xu J, Yan J, Guo L, Song J, Feng R, Yu M (2018) Genome-wide identification and classification of MYB superfamily genes in peach. PLoS ONE 13(6):e0199192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130(20):4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protocol 1:641–646

    Article  CAS  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 31660554, 32060587 and 31660046), the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou province (Grant No. U1812401), Provincial Program on platform and Talent Development of the Department of Science and Technology of Guizhou China (Grant No. [2019]5617), The talent platform of Qiankehe ([2017]5726-44), Guizhou Educational project Qianjiaohe ([2021]309). The authors would like to express their gratitude to EditSprings (https://www.editsprings.com/) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Contributions

HY devised the research. XH performed the experiments. YL and QW interpreted the results. XH and ZW designed the figures. HY wrote the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Xiaolong Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Barbara Mary Doyle Prestwich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Wu, Z., Liu, Y. et al. Functional divergence of RrGL3 and RrEGL3 from Rosa roxburghii in mediating trichome development. Plant Cell Tiss Organ Cult 147, 313–324 (2021). https://doi.org/10.1007/s11240-021-02125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02125-z

Keywords

Navigation