Skip to main content
Log in

Development of reproducible regeneration and transformation system for Sesamum indicum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sesamum indicum is an important oilseed crop with beneficiary nutrients such as essential fatty acids, proteins, and lignan. S. indicum crop improvement using conventional breeding methods was disastrous. Moreover, no reproducible regeneration and transformation protocol for large-scale generation of independent primary transformed plant lines of S. indicum virtually exists. Therefore, in the present study, a reproducible regeneration and transformation method was developed for S. indicum. Direct shoot regeneration (94.44%) was achieved using plumule tips as an explant source and when maintained on regeneration medium (BM11) an amalgamation of half the strength of MS macronutrients and B5 macronutrients together with MS micronutrients and vitamins. Maximum number of shoots (~ 16–19 shoots/explant) was obtained on BM11 medium supplemented with TDZ (1 mg/L) and BAP (0.1 mg/L). High root induction efficiency (~ 97%) was observed on RM4 medium consisted of half MS macronutrients, SH micronutrients and vitamins. The developed protocol was found effective for other commercially valuable genotypes such as Co 1, Phule til and Tilottama as well. Successful regeneration was subsequently extended to transformation of reporter gene (gfp: green fluorescent protein) as revealed by molecular analyses includes Southern hybridization, northern hybridization, real time PCR and histological study of the transformants developed in the present study. Based on the Southern analysis the calculated transformation frequency was found to be 1.33%. The presently developed regeneration and transformation system might facilitate any desired improvement of sesame crop.

Key message

The present study demonstrated an improved regeneration and transformation method for S. indicum, which is genotype independent and can undergo desired modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aasim M, Khawar KM, Özcan S (2009) In vitro micropropagation from plumular apices of Turkish cowpea (Vigna unguiculata L.) cultivar Akkiz. Sci Hortic 122:468–471

    CAS  Google Scholar 

  • Aasim M (2012) Micropropagation of lentil (Lens culinarisMedik.) using pulse treatment of immature plumular apices. Pak J Agric Sci 49:149–154

    Google Scholar 

  • Aasim M, Day S, Rezaei F, Hajyzadeh M (2013) Multiple shoot regeneration of plumular apices of chickpea. Turk J Agric For 37:33–39

    CAS  Google Scholar 

  • Al-Shafeay AF, Ibrahim AS, Nesiem MR, Tawfik MS (2011) Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag1. GM Crops 2:182–192

    Google Scholar 

  • Ashri A (2010) Sesame breeding. Plant breeding reviews. Wiley, Hoboken, pp 179–228

    Google Scholar 

  • Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269

    Google Scholar 

  • Baque MA, Hahn E, Paek K (2010) Induction mechanism of adventitious root from leaf explants of Morindacitrifolia as affected by auxin and light quality. In Vitro Cell Dev Biol Plant 46:71–80

    CAS  Google Scholar 

  • Belide S, Hac L, Singh SP, Green AG, Wood CC (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12

    CAS  Google Scholar 

  • Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tissue Organ Cult 107:317–323

    CAS  Google Scholar 

  • Caboni E, Lauri P, Angell SD (2000) In vitro plant regeneration from callers of shoot apices in apple shoot culture. Plant Cell Rep 19:755–760

    CAS  Google Scholar 

  • Chae SH (2014) Influence of media on in vitro root regeneration and micropropagation of Chrysanthemummorifolium Ramat cv. Hwiparam. Life Sci J 11:797–799

    Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    CAS  Google Scholar 

  • Chakraborti P, Ghosh A (2009) Variation in callus induction and root shoot bud formation depend on seed coat of sesame genotypes. Res J Bot 5:14–19

    Google Scholar 

  • Chandra R, Bajpai A, Gupta S, Tiwari RK (2004) Embryogenesis and plant regeneration from mesocarp of Psidium guava L. Indian J Biotechnol 3:246–248

    Google Scholar 

  • Chattopadhyaya B, Banerjee J, Basu A, Sen SK, Maiti MK (2010) Shoot induction and regeneration using internodal transverse thin cell layer culture in Sesamum indicum L. Plant Biotechnol Rep 4:173–178

    Google Scholar 

  • Chee PP (1995) Stimulation of adventitious rooting of Taxus species by thiamine. Plant Cell Rep 14:753–757

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  Google Scholar 

  • Chongdar S, Chhetri B, Mahato SK, Saha A (2015) Production potentials and economic feasibility of improved sesame (Sesamum indicum L.) cultivars under varying dates of sowing in prevailing agro-climatic condition of North Bengal. Int J Agric Sci 7:434–439

    CAS  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 251:1175–1190

    CAS  Google Scholar 

  • Chu CC, Wang CS, Sun CC, Hsu C, Yin KC, Chu CY (1975) Establishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources. Sci Sinica 18:659–668

    Google Scholar 

  • Cui X, Chakrabarty D, Lee E, Paek K (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    CAS  Google Scholar 

  • Das DK, Reddy MK, Upadhyaya KC, Sopory SK (2002) An efficient leaf-disk culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitisvinifera L.). Plant cell Rep 20:999–1005

    CAS  Google Scholar 

  • Day DC, Lee E, Kobayashi J, Holappa DL, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    CAS  Google Scholar 

  • George EF, Hall MA, Klerk GD (2008) The components of plant tissue culture media I: macro- and micro-nutrients. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, New York, pp 65–113

    Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2016) Efficient in vitro callus induction and plant regeneration protocol for different polish tomato cultivars. NotulaeBotanicaeHortiAgrobotanici Cluj-Napoca 44:452–458

    CAS  Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2010) The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tissue Organ Cult 102:79–86

    Google Scholar 

  • Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant-Microbe Interact 13:649–657

    CAS  Google Scholar 

  • Hasnat R, Abbasi NA, Hafiz IA, Ahmad T, Chudhary Z (2008) Effect of different bacterial dilutions on transformation efficiency of hot chilli (Capsicumfrutescens L.) varieties. Pak J Bot 40:2655–2662

    Google Scholar 

  • Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada H (1991) Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 32:629–638

    CAS  Google Scholar 

  • Honnale H, Rao S (2013) Direct somatic embryogenesis in Sesamum indicum (L.) Cv-E8 from cotyledon and hypocotyl explants. Int J Appl Biol Pharm Technol 4:120–127

    CAS  Google Scholar 

  • Jeyamary R, Jayabalan N (1997) Influence of growth regulators on somatic embryogenesis in Sesamum indicum L. Plant Cell Tissue Organ Cult 46:67–70

    Google Scholar 

  • Kapoor S, Parmer SS, Yadav M, Chaudhary D, Sainger M, Jaiwal R, Jaiwal PK (2015) Sesame (Sesamum indicum L.). In: Wang K (ed) Agrobacterium protocols. Methods in molecular biology. Humana Press, Totowa, pp 37–45

    Google Scholar 

  • Karami O (2008) Factors affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J 2:127–137

    Google Scholar 

  • Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing Plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

    CAS  Google Scholar 

  • Kouakou TH (2003) Contribution à l’étude de l’embryogenèsesomatique chez le cotonnier: évolution de quelquesparamètresbiochimiques au cours de la callogenèse et de la culture de suspension cellulaires. Thèse de doctorat N° 023/2003, Université de Cocody, Abidjan, Côte d’Ivoire

  • Kulkarni VV, Ranganatha CN, Shankergoud I (2017) Interspecific crossing barriers in Sesame (Sesamum indicum L.). Int J Curr Microbiol Appl Sci 6:4894–4900

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  Google Scholar 

  • Lokesha R, Rahaminsab J, Ranganatha ARG, Dharmaraj PS (2012) Whole plant regeneration via adventitious shoot formation from de-embryonated cotyledon explants of sesame (Sesamum indicum L.). World J Sci Technol 2:47–51

    CAS  Google Scholar 

  • Ma XH, Wu TL (2008) Rapid and efficient regeneration in soybean (Glycine max L. Merrill) from whole cotyledonary node explants. Acta Physiologiae Plant 30:209–216

    CAS  Google Scholar 

  • Malaghan SV, Lokesha R, Savitha R, Ranganatha ARG (2013) Adventitious shoot regeneration in Sesame (Sesamum indicum L.) (Pedaliaceae) via deembryonatedcotyledonary explants. Res J Biol 1:31–35

    Google Scholar 

  • Martin KP (2002) Rapid propagation of Holostemmaada-kodienSchult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep 21:112–117

    CAS  Google Scholar 

  • Matzke AJ, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    CAS  Google Scholar 

  • Michel Z, Hilaire KT, Mongomaké K, Georges AN, Justin KY (2008) Effect of genotype, explants, growth regulators and sugars on callus induction in cotton (Gossypium hirsutum L.). Aust J Crop Sci 2:1–9

    CAS  Google Scholar 

  • Miyahara Y, Hibasami H, Katsuzaki H, Imai K, Komiya T (2001) Sesamolin from sesame seed inhibits proliferation by inducing apoptosis in human lymphoid leukemiaMolt 4b cells. Int J Mol Med 7:369–371

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plant 15:473–497

    CAS  Google Scholar 

  • Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670

    CAS  Google Scholar 

  • Nakano D, Kurumazuka D, Nagai Y, Nishiyama A, Kiso Y, Matsumura Y (2008) Dietary sesamin suppresses aortic NADPH oxidase in DOCA salt hypertensive rats. Clin Exp Pharmacol Physiol 35:324–326

    CAS  Google Scholar 

  • Nandagopal S, Kumari BDR (2006) Adenine sulphate induced high frequency shoot organogenesis in callus and in vitro flowering of Cichoriumintybus L. cv. Focus - a potent medicinal plant. Acta agriculturaeSlovenica 87:415–425

    CAS  Google Scholar 

  • Nzikou JM, Matos L, Bouanga-Kalou G, Ndangui CB, Pambou-Tobi NPG, Kimbonguila A, Silou Th, Linder M, Desobry S (2009) Chemical composition on the seeds and oil of Sesame (Sesamum indicum L.) grown in Congo-Brazzaville. Adv J Food Sci Technol 1:6–11

    CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol Mol Biol Rev 1:12–20

    Google Scholar 

  • Oplinger ES, Putnam DH, Kaminski AR, Hanson CV, Oelke EA, Schult EE, Doll JD (1990) Sesame, Alternative field crops manual. www.hort.purdue.edu/sesame.html

  • Osman NI, Sidik NJ, Awa A (2016) Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtoniaracemosa L. Asian Pac J Trop Biomed 6:143–147

    Google Scholar 

  • Pathak N, Rai AK, Saha S, Walia S, Sen SK, Bhat KV (2014) Quantitative dissection of antioxidative bioactive components in cultivated and wild sesame germplasm reveals potentially exploitable wide genetic variability. J Crop Sci Biotechnol 17:127–139

    Google Scholar 

  • Perera D, Barnes DJ, Baldwin B, Reichert N (2015) Direct and indirect in vitro regeneration of Miscanthus × giganteus cultivar Freedom: effects of explant type and medium on regeneration efficiency. In Vitro Cell Dev Biol Plant 51:294–302

    CAS  Google Scholar 

  • Pusadkar PP, Kokiladevi E, Aishwarya V, Gnanam R, Sudhakar D, Balasubramanian P (2015) Efficacy of growth hormone for callus induction in sesame (Sesamum indicum L.). J Cell Tissue Res 15:5067–5071

    CAS  Google Scholar 

  • Pusadkar P, Kokiladevi E, Shilpa B (2016) Efficacy of plant growth hormones for shoot induction and regeneration in Sesame (Sesamum indicumL.). Res J Biotechnol 11:27–30

    Google Scholar 

  • Raja A, Jayabalan N (2010) Callus induction and plantlet regeneration from leaf explant of sesame (Sesamum indicum L. cv. SVPR-1). J Swamy Bot Club 27:93–98

    Google Scholar 

  • Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol Plant 38:116–124

    CAS  Google Scholar 

  • Rao S, Honnale HN (2011) Callus induction and organogenesis in Sesamum indicum L. Cv. E 8. Curr Trends Biotechnol Pharm 5:1462–1468

    CAS  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    CAS  Google Scholar 

  • Sagar R, Ganesh C (2004) Frontline demonstration on sesame in West Bengal. Agric Ext Rev 16:7–10

    Google Scholar 

  • Sankar D, Sambandam G, Ramakrishna RM, Pugalendi KV (2005) Modulation of blood pressure, lipid profiles and redox status in hypertensive patients taking different edible oils. Clin Chemica Acta 355:97–104

    CAS  Google Scholar 

  • Saravanan S, Nadarajan N (2005) Effect of media supplements on in vitro response of sesame (Sesamum indicum L.) genotypes. Res J Agric Biol Sci 1:98–100

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    CAS  Google Scholar 

  • Seo HY, Kim YJ, Park TI, Kim HS, Yun HS (2007) High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L. In Vitro Cell Dev Biol Plant 43:209–214

    CAS  Google Scholar 

  • Sepahvand S, Ebadi A, Kamali K, Ghaemmaghami SA (2012) Effect of myo-inositol and thiamine on micropropagation of GF677 (Peach × Almond hybrid). J Agric Sci 4:275–280

    Google Scholar 

  • Shashidhara N, Ravikumar H, Ashoka N, Santosh DT, Pawar P, Lokesha R, Janagoudar BS (2011a) Callus induction and subculturing in sesame (Sesamum indicum L.): a basic strategy. Int J Agric Environ Biotechnol 4:153–156

    Google Scholar 

  • Shashidhara N, Ravikumar H, Ashoka N, Santosh DT, Pawar P, Lokesha R, Janagoudar BS (2011b) Thidiazuron (TDZ) induced shoot regeneration in sesame (Sesamum indicum L.). Int J Agric Environ Biotechnol 4:41–44

    Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamustinctorius L.). Plant Cell Tissue Organ Cult 103:387–401

    CAS  Google Scholar 

  • Siao AC, Hou CW, Kao YH, Jeng KC (2015) Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer MCF-7 cells. Asian Pac J Cancer Prev 16:3779–3783

    Google Scholar 

  • Singh S, Hazra S (2009) Somatic embryogenesis from the axillary meristems of peanut (Arachis hypogaea L.). Plant Biotech Rep 3:333–340

    Google Scholar 

  • Sujatha M, Vijay S, Vasavi S, Reddy PV, Rao SC (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tissue Organ Cult 110:275–287

    Google Scholar 

  • Sun Q, Zhao Y, Sun H, Hammond RW, Davis RE, Xin L (2011) High efficiency and stable genetic transformation of pear (Pyrus communis L.) leaf segments and regeneration of transgenic plants. Acta Physiologiae Plant 33:383–390

    Google Scholar 

  • Surekha C, Arundhati A, Seshagiri Rao G (2007) Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J Biol Sci 7:176–181

    CAS  Google Scholar 

  • Taskin KM, Ercan AG, Turgut K (1999) Agrobacterium tumefaciens-mediated transformation of Sesame (Sesamum indicum L.). Turk J Bot 23:291–295

    Google Scholar 

  • Tilkat E, Onay A, Yıldırım H, Ayaz E (2009) Direct plant regeneration from mature leaf explants of pistachio, Pistacia vera L. Sci Hortic 121:361–365

    CAS  Google Scholar 

  • Tiwari S, Kumar S, Gontia I (2011) Biotechnological approaches for sesame (Sesamum indicum L.) and niger (GuizotiaabyssinicaLf Cass.). Asia-Pac J Mol Biol Biotechnol 19:2–9

    Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) An efficient method of Agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) Using Grafting. Appl Biochem Biotechnol 175:436–453

    CAS  Google Scholar 

  • Tsuruoka N, Kidokoro A, Matsumoto I, Abe K, Kiso Y (2005) Modulating effect of sesamin, a functional lignan in sesame seeds, on the transcription levels of lipid and alcohol-metabolizing enzymes in rat liver: a DNA microarray study. Biosci Biotechnol Biochem 69:179–188

    CAS  Google Scholar 

  • Verma OP (2012) Standardization of auxin concentration for root induction in Chrysanthemum morifolium. Adv Appl Sci Res 3:1449–1453

    CAS  Google Scholar 

  • Vooková A, Kormuťák B (2001) Effect of sucrose concentration, charcoal and indole 3-butyric acid on germination of Abiesnumidica somatic embryos. Biologia Plant 44:181–184

    Google Scholar 

  • Were BA, Gudu S, Onkware AO, Carlsson AS, Welander M (2006) In vitro regeneration of sesame (Sesamum indicum L.) from seedling cotyledon and hypocotyl explants. Plant Cell Tissue Organ Cult 85:235–239

    Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tissue Organ Cult 103:377–386

    CAS  Google Scholar 

  • Younghee K (2001) Effects of BA, NAA, 2, 4-D and AgNO3 treatments on callus induction and shoot regeneration from hypocotyl and cotyledon of sesame (Sesamum indicum L.). J Korean Soc Hortic Sci 42:70–74

    Google Scholar 

  • Yuan JL, Yue JJ, Wu XL, Gu XP (2013) Protocol for callus induction and somatic embryogenesis in Moso Bamboo. PLoS ONE 8:e81954

    Google Scholar 

  • Ziemienowicz A (2014) Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol 3:95–102

    Google Scholar 

  • Zimik M, Arumugam N (2017) Induction of shoot regeneration in cotyledon explants of the oilseed crop Sesamum indicum L. J Genet Eng Biotechnol 15:303–308

    Google Scholar 

  • Zouzou M, Kouadio YJ, Koné M, Kouakou TH, Dénézon DO (2000) Callogenèse chez Gossypium hirsutum L.: effets cultivar, conditions de culture et type de matériel. Biot Rev Int Sci Vie Terre 1:48–56

    Google Scholar 

Download references

Acknowledgements

Financial assistance in the form of the grant support to this laboratory from the Indian Council of Agricultural Research (NAIP/ICAR), Government of India, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

TG and AB conceived and designed research, conducted experiments, analysed data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Asitava Basu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K X Tang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayatri, T., Basu, A. Development of reproducible regeneration and transformation system for Sesamum indicum. Plant Cell Tiss Organ Cult 143, 441–456 (2020). https://doi.org/10.1007/s11240-020-01931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01931-1

Keywords

Navigation