A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis

Abstract

A novel regeneration system through micrografting is reported for the endangered Argania spinosa (L.) Skeels. Rootstocks were obtained from in vitro germinated seeds of the argan genotype G27. It was found that the storage time significantly affects the seed germination capacity, and that the seeds cultured immediately after harvest exhibit the highest germination percentage (91.6%). Besides, transferring seedlings to half-strength Murashige and Skoog (½MS) medium supplemented with 1 mg l−1 gibberellic acid (GA3) and 1 mg l−1 6-benzylaminopurine (BAP) resulted in the highest shoot and root lengths (2.05 and 5.73 cm, respectively). Scions were taken from axillary shoots developed in vitro from microcuttings of genotype G41. Micrografting was performed by using the wedge technique. Afterwards, the micrografted plants were transferred to media supplemented with different plant growth regulators (PGRs). After 2 months of culture, 65–100% of the micrografted plants survived, and no difficulties were observed during the formation of the rootstock-scion union. Interestingly, the use of GA3 at concentrations ranging from 0.1 to 1 mg l−1 was essential for successful micrografting (85–100%) and subsequent growth and development of shoots (2.40–2.72 cm length). After micrografting, scions produced one, two or multiple shoots, depending on PGRs. Histological analysis clearly demonstrated the successful union between rootstocks and scions, with active cell division and vascular tissue formation in the grafting region. After transferring the micrografted plants to the glasshouse, a survival rate of 80% was observed, and the plants showed normal growth and development.

Key message

An efficient micropropagation system through in vitro grafting is reported for the first time ever for Argania spinosa (L.) Skeels, and successful micrografting is confirmed by histological analyses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Al-Menaie HS, Bhat NR, El-Nil MA, Al-Dosery SM, Al-Shatti AA, Gamalin P, Suresh N (2007) Seed germination of argan (Argania spinosa L.). Am Eurasian J Sci Res 2:1–4

    Google Scholar 

  2. Almeida WAB, Filho FAAM, Pino LE, Boscariol RL, Rodriguez APM, Mendes BMJ (2003) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck Plant Sci 164:203–211

    CAS  Google Scholar 

  3. Bairu MW, Stirk WA, Van Staden J (2009) Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell Tiss Organ Cult 98:239–248

    Google Scholar 

  4. Berka S, Himrane H, Taguemount D, Tabet M, Aïd F (2018) Contribution à l’étude de la germination et de la conservation des graines d’Argania spinosa (L.) Skeels de la région de Tindouf (Algérie). Rev Écol 73:309–317

    Google Scholar 

  5. Bourrain L, Charlot G (2014) In vitro micrografting of cherry (Prunus avium L. “Regina”) onto “Piku®1” rootstock [P. avium × (P. canescens × P. tomentosa)]. J Hortic Sci Biotechnol 89:47–52

    Google Scholar 

  6. Chand L, Sharma S, Kajla S (2016) Effect of rootstock and age of seedling on success of in vitro shoot tip grafting in Kinnow mandarin. Indian J Hort 73:8–12

    Google Scholar 

  7. Chaturani GDG, Subasinghe S, Jayatilleke MP (2006) In vitro establishment, germination and growth performance of Red sandal wood (Pterocarpus santalinus L.). Trop Agric Res Ext 9:116–130

    Google Scholar 

  8. Córdova-Risco J, Rojas-Idrogo C, Delgado-Paredes GE (2017) In vitro micrografting of lucumo (Pouteria lucuma), Sapotaceae. Env Exp Biol 15:217–224

    Google Scholar 

  9. Dumanoğlu H, Çelik A, Büyükkartal HN, Dousti S (2014) Morphological and anatomical investigations on in vitro micrografts of OHxF 333/Pyrus elaeagrifolia interstock/rootstock combination in pears. J Agric Sci 20:269–279

    Google Scholar 

  10. El Babili F, Bouajila J, Fouraste I, Valentin A, Mauret S, Moulis C (2010) Chemical study, antimalarial and antioxidant activities, and cytotoxicity to human breast cancer cells (MCF7) of Argania spinosa. Phytomedicine 17:157–160

    PubMed  Google Scholar 

  11. El Kharrassi Y, Maata N, Mazri MA, El Kamouni S, Talbi M, El Kebbaj R, Moustaid K, Essamadi AK, Andreoletti P, El Mzouri EH, Cherkaoui-Malki M, Nasser B (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Char 12:747–754

    Google Scholar 

  12. Estrada-Luna AA, López-Peralta C, Cárdenas-Soriano E (2002) In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia spp.). Sci Hortic 92:317–327

    Google Scholar 

  13. Falasca SL, Pitta-Alvarez S, Ulberich A (2018) The potential growing areas for Argania spinosa (L) Skeels (Sapotaceae) in Argentinean drylands. Int J Agron. https://doi.org/10.1155/2018/9262659

    Article  Google Scholar 

  14. Farahani F, Razeghi S, Peyvandi M, Attaii S, Hosseini M, Mazinani MH (2011) Micrografting and micropropagation of olive (Olea europaea L.) Iranian cultivar: Zard. Afr J Plant Sci 5:671–675

    Google Scholar 

  15. Fleming MB, Richards CM, Walters C (2017) Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot 68:2219–2230

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    CAS  Google Scholar 

  17. Godo T, Komori M, Nakaoki E, Yukawa T, Miyoshi K (2010) Germination of mature seeds of Calanthe tricarinata Lindl., an endangered terrestrial orchid, by asymbiotic culture in vitro. Vitro Cell Dev Biol Plant 46:323–328

    CAS  Google Scholar 

  18. Gow WP, Chen JT, Chang WC (2009) Effects of genotype, light regime, explant position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol Plant 31:363–369

    Google Scholar 

  19. Hsina T, El Mtili N (2009) In Vitro micrografting of mature carob tree (Ceratonia siliqua L.). Open Hort J 2:44–48

    CAS  Google Scholar 

  20. Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Brasi Fisio Vegl 13:196–223

    Google Scholar 

  21. Jonard R (1986) Micrografting and its applications to tree improvement. In: Baja YPS (ed) Biotechnology in agriculture and forestry: trees. Springer, Berlin, pp 31–48

    Google Scholar 

  22. Justamante MS, Ibáñez S, Villanova J, Pérez- Pérez JM (2017) Vegetative propagation of argan tree (Argania spinosa (L.) Skeels) using in vitro germinated seeds and stem cuttings. Sci Hortic 225:81–87

    CAS  Google Scholar 

  23. Koufan M, Belkoura I, Alaoui T (2018) The multiplication of the argane tree by microcutting (Argania spinosa L. Skeels). Eur J Biotechnol Biosci 6:47–52

    Google Scholar 

  24. Koufan M, Belkoura I, Mazri MA, Amarraque A, Essatte A, Elhorri H, Zaddoug F, Alaoui T (2020) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell Tiss Organ Cult 141:217–227

    CAS  Google Scholar 

  25. Lamaoui M, Chakhchar A, El Kharrassr Y, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2019) Selection and Multiplication of Argan (Argania spinosa L.) superior clones for conservation purposes. Acta Sci Agric 3:116–123

    Google Scholar 

  26. Lybbert TJ, Aboudrare A, Chaloud D, Magnan N, Nash M (2011) Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc Natl Acad Sci 108:13963–13968

    CAS  PubMed  Google Scholar 

  27. Martínez-Gómez P, Correa D, Sánchez-Blanco MJ, Majourhat K, Rubio M, Martínez-García PJ (2018) Posibilidades del cultivo del argán [Argania spinosa (L.) Skeels] en el Sureste español. Rev Fruticul 66:26–41

    Google Scholar 

  28. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic 159:88–95

    Google Scholar 

  29. Metougui ML, Mokhtari M, Machat I, Azeroual I, Benlhabib O (2017) Multiplication végétative de l’arganier (Argania spinosa) par bouturage et par greffage. Rev Mar Sci Agron Vét 5:428–436

    Google Scholar 

  30. Meziani R, Jaiti F, Mazri MA, Hassani A, Ben Salem S, Anjarne M, Ait Chitt M, Alem C (2016) Organogenesis of Phoenix dactylifera L. cv. Mejhoul: influences of natural and synthetic compounds on tissue browning, and analysis of protein concentrations and peroxidase activity in explants. Sci Hortic 204:145–152

    CAS  Google Scholar 

  31. Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, The Netherlands, pp 227–281

    Google Scholar 

  32. Moukrim S, Lahssini S, Rhazi M, Mharzi Alaoui H, Benabou A, Wahby I, El Madihi M, Arahou M, Rhazi L (2019) Climate change impacts on potential distribution of multipurpose agro-forestry species: Argania spinosa (L.) Skeels as case study. Agrofor Syst 93:1209–1219

    Google Scholar 

  33. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Planta 15:473–479

    CAS  Google Scholar 

  34. Murashige T, Bitters WP, Rangan TS, Nauer EM, Roistachek CN, Holliday PB (1972) A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clones. HortScience 7:118–119

    Google Scholar 

  35. Nouaim R, Mangin G, Breuil MC, Chaussod R (2002) The argan tree (Argania spinosa) in Morocco propagation by seeds, cuttings and in-vitro techniques. Agrofor Syst 54:71–81

    Google Scholar 

  36. Pahnekolayi MD, Tehranifar A, Samiei L, Shoor M (2019) Optimizing culture medium ingredients and micrografting devices can promote in vitro micrografting of cut roses on different rootstocks. Plant Cell Tiss Organ Cult 137:265–274

    Google Scholar 

  37. Perrin Y, Lardet L, Enjalric F, Carron MP (1994) Rajeunissement de clones matures d'Hevea brasiliensis (Müll. Arg.) par microgreffage in vitro. Can J Plant Sci 74:623–630

    Google Scholar 

  38. Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility–incompatibility. Sci Hortic 106:1–11

    Google Scholar 

  39. Raharjo SHT, Litz RE (2005) Micrografting and ex vitro grafting for somatic embryo rescue and plant recovery in avocado (Persea americana). Plant Cell Tiss Organ Cult 82:1–9

    Google Scholar 

  40. Ribeiro LM, Nery LA, Vieira LM, Mercadante-Simões MO (2015) Histological study of micrografting in passion fruit. Plant Cell Tiss Organ Cult 123:173–181

    Google Scholar 

  41. Sharma S, Balwinder S, Gita R, Zaidi AA, Vipin KH, Avinash KN, Virk GS (2008) In vitro production of Indian citrus ring spot virus (ICRSV) free Kinnow plants employing thermotherapy coupled with shoot tip grafting. Plant Cell Tiss Organ Cult 92:85–92

    Google Scholar 

  42. Shelar VR, Shaikh RS, Nikam AS (2008) Soybean seed quality during storage: a review. Agric Rev 29:125–131

    Google Scholar 

  43. Taoufiq MS, Bouzoubaa Z, Hatimi A, Tahrauch S (2011) Étude et optimisation des techniques de régénération chez l’arganier (Argania spinosa (L.) Skeels). 1st International Argan Congress, Agadir, Morocco, pp 330–336

  44. Singh AK, Meetei NT, Kundu S, Salma U, Mandal N (2019) In vitro micrografting using three diverse indigenous rootstocks for the production of Citrus tristeza virus-free plants of Khasi mandarin. Vitro Cell Dev Biol-Plant 55:180–189

    CAS  Google Scholar 

  45. Tsutsui H, Notaguchi M (2017) The use of grafting to study systemic signaling in plants. Plant Cell Physiol 58:1291–1301

    CAS  PubMed  Google Scholar 

  46. Volk GM, Bonnart R, Krueger R, Lee R (2012) Cryopreservation of citrus shoot tips using micrografting for recovery. Cryoletters 33:418–426

    CAS  PubMed  Google Scholar 

  47. Yıldırım H, Onay A, Suzerer V, Tilkat E, Ozden-Tokatli Y, Akdemir H (2010) Micrografting of almond (Prunus dulcis Mill.) cultivars “Ferragnes” and “Ferraduel”. Sci Hortic 125:361–367

    Google Scholar 

  48. Zrira S (2017) Some important aromatic and medicinal plants of Morocco. In: Neffati M, Najjaa H, Máthé Á (eds) Medicinal and aromatic plants of the world—Africa, medicinal and aromatic plants of the world, vol 3. Springer, Dordrecht, pp 91–125

    Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MK and IB conceived the idea. IB and LER supervised the work. MK performed seed germination experiments. MAM performed microcuttings experiments and carried out statistical analysis. MK and MAM wrote the manuscript. MK, AE and SM performed micrografting experiments. SM, AE and IT performed histological analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meriyem Koufan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Amita Bhattacharya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koufan, M., Mazri, M.A., Essatte, A. et al. A novel regeneration system through micrografting for Argania spinosa (L.) Skeels, and confirmation of successful rootstock-scion union by histological analysis. Plant Cell Tiss Organ Cult 142, 369–378 (2020). https://doi.org/10.1007/s11240-020-01868-5

Download citation

Keywords

  • Acclimatization
  • Argania spinosa (L.) skeels
  • Histology
  • In vitro
  • Micrografting