Chitosan versus plant growth regulators: a comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq.

Abstract

This study aimed to compare the in vitro effects of chitosan oligomers and polymer with commonly-used plant growth regulators (PGRs) on seed germination, protocorm formation, and organ development in Serapias vomeracea. The effects of N-acetylated (10%) chitosan oligomer mixture (CHI-OM) with a degree of polymerization (DP) between 2 and 15 (5, 10, 15, and 20 mg L−1) and chitosan polymer (CHI-P) with a DP of 70 were compared with commonly-used cytokinins [6-benzylaminopurine (BAP) and kinetin (KIN)], auxins [indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA)], and jasmonic acid (JAS) at 0.25, 0.5, 1.0, and 2.0 mg L−1. The medium supplemented with CHI-P at 5 mg L−1 gave the highest seed germination rate, whereas JAS and CHI-OM triggered protocorm formation better than the all treatments tested. The JAS and IAA treatments resulted in intense browning of the roots. The CHI-P treatments at high concentrations and JAS treatments at moderate concentrations increased mean shoot length while the medium containing KIN at 0.5 mg L−1 induced root elongation significantly. The root elongation-inhibitory effect of chitosan was observed at the higher concentrations of CHI-OM, but the media containing 10 mg L−1 CHI-OM and 15 mg L−1 CHI-P triggered adventitious rooting. However, the highest tuberization success was found after 10 mg L−1 CHI-OM and 0.5 mg L−1 JAS treatments. Tuber development was achieved in the media supplemented with BAP and CHI-OM. This study suggested that well-characterized chitosan could be used as an alternative to JAS and BAP in orchid cultures.

Key message

Well-characterized chitosans at the right concentration induce similar effects with jasmonic acid and 6-benzylaminopurine in orchid cultures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acemi A, Özen F (2019) Optimization of in vitro asymbiotic seed germination protocol for Serapias vomeracea. EuroBiotech J 3(3):143–151. https://doi.org/10.2478/ebtj-2019-0017

    Article  Google Scholar 

  2. Acemi A, Özen F, Kiran R (2013) In vitro propagation of Amsonia orientalis Decne from nodal segments of adult plants. Propag Ornam Plants 13(1):25–32

    Google Scholar 

  3. Acemi A, Türker-Kaya S, Özen F (2016) FT-IR spectroscopy based evaluation of changes in primary metabolites of Amsonia orientalis after in vitro 6-benzylaminopurine treatment. Not Bot Hort Agrobot 44(1):209–214. https://doi.org/10.15835/nbha44110194

    CAS  Article  Google Scholar 

  4. Acemi A, Bayrak B, Çakır M, Demiryürek E, Gün E, El Gueddari NE, Özen F (2018) Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cell Dev Biol Plant 54:537–544. https://doi.org/10.1007/s11627-018-9915-0

    CAS  Article  Google Scholar 

  5. Acemi A, Çobanoğlu Ö, Türker-Kaya S (2019) FTIR-based comparative analysis of glucomannan contents in some tuberous orchids, and effects of pre-processing on glucomannan measurement. J Sci Food Agric 99:3681–3686. https://doi.org/10.1002/jsfa.9596

    CAS  PubMed  Article  Google Scholar 

  6. Ahmadi B, Shariatpanahi ME (2015) Proline and chitosan enhanced efficiency of microspore embryogenesis induction and plantlet regeneration in Brassica napus L. Plant Cell Tissue Organ Cult 123:57–65. https://doi.org/10.1007/s11240-015-0814-3

    CAS  Article  Google Scholar 

  7. Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Bañuelos-Hernández KP, García-Nava JR, Leyva-Ovalle OR, Peña-Valdivia CB, Trejoa C, Ybarra-Moncada MC (2017) Chitosan coating effect on vase life of flowering stems of Heliconia bihai (L.) L. cv. Halloween. Postharvest Biol Technol 132:179–187. https://doi.org/10.1016/j.postharvbio.2017.05.009

    CAS  Article  Google Scholar 

  9. Bayraktar M, Naziri E, Akgun IH, Karabey F, Ilhan E, Akyol B, Bedir E, Gurel A (2016) Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell Tissue Organ Cult 127:289–300. https://doi.org/10.1007/s11240-016-1049-7

    CAS  Article  Google Scholar 

  10. Bektaş E, Sökmen A (2016) In vitro seed germination, plantlet growth, tuberization, and synthetic seed production of Serapias vomeracea (Burmf) Briq. Turk J Bot 40(6):584–594. https://doi.org/10.3906/bot-1512-13

    CAS  Article  Google Scholar 

  11. Chitarrini G, Zulini L, Masuero D, Vrhovsek U (2017) Lipid, phenol and carotenoid changes in ‘Bianca’ grapevine leaves after mechanical wounding: a case study. Protoplasma 254(6):2095–2106. https://doi.org/10.1007/s00709-017-1100-5

    CAS  PubMed  Article  Google Scholar 

  12. Corsi B, Riccioni L, Forni C (2015) In vitro cultures of Actinidia deliciosa (A Chev) CF Liang & AR Ferguson: a tool to study the SAR induction of chitosan treatment. Org Agric 5(3):189–198. https://doi.org/10.1007/s13165-014-0087-x

    Article  Google Scholar 

  13. Da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133. https://doi.org/10.3389/fpls.2013.00133

    PubMed  PubMed Central  Article  Google Scholar 

  14. Das SN, Madhuprakash J, Sarma PVSRN, Purushotham P, Suma K, Manjeet K, Rambabu S, El Gueddari NE, Moerschbacher BM, Podile AR (2015) Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol 35(1):29–43. https://doi.org/10.3109/07388551.2013.798255

    CAS  PubMed  Article  Google Scholar 

  15. Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA (2016) Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo‐phytodienoic acid. J Exp Bot 67:2277–2284. https://doi.org/10.1093/jxb/erw028

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. David D, Gansau JA, Abdullah JO (2010) Effect of NAA and BAP on protocorm proliferation of borneo scented orchid, Vanda helvola. Asia–Pac J Mol Biol Biotechnol 18:221–224

    Google Scholar 

  17. Debeljak N, Regvar M, Dixon KW, Sivasithamparam K (2002) Induction of tuberisation in vitro with jasmonic acid and sucrose in an Australian terrestrial orchid, Pterostylis sanguinea. Plant Growth Regul 36:253–260. https://doi.org/10.1023/A:1016570319387

    CAS  Article  Google Scholar 

  18. El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA (2013) Response of strawberry plants to foliar spraying of chitosan. Res J Agric Biol Sci 9(6):366–372

    Google Scholar 

  19. Esitken A, Ercisli S, Eken C, Tay D (2004) Seed priming effect on symbiotic germination and seedling development of Orchis palustris Jacq. HortScience 39(7):1700–1701. https://doi.org/10.21273/HORTSCI.39.7.1700

    Article  Google Scholar 

  20. Godo T, Komori M, Nakaoki E, Yukawa T, Miyoshi K (2010) Germination of mature seeds of Calanthe tricarinata Lindl an endangered terrestrial orchid, by asymbiotic culture in vitro. In Vitro Cell Dev Biol Plant 46:323–328. https://doi.org/10.1007/s11627-009-9271-1

    CAS  Article  Google Scholar 

  21. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179. https://doi.org/10.1016/j.tplants.2011.12.005

    CAS  PubMed  Article  Google Scholar 

  22. Haebel S, Bahrke S, Peter MG (2007) Quantitative sequencing of complex mixtures of heterochitooligosaccharides by MALDI-linear ion trap mass spectrometry. Anal Chem 79(15):5557–5566. https://doi.org/10.1021/ac062254u

    CAS  PubMed  Article  Google Scholar 

  23. Jevšnik T, Luthar Z (2015) Successful disinfection protocol for orchid seeds and influence of gelling agent on germination and growth. Acta Agric Slov 105:95–102. https://doi.org/10.14720/aas.2015.105.1.10

    CAS  Article  Google Scholar 

  24. Knudson L (1946) A new nutrient solution for germination of orchid seed. Am Orchid Soc Bull 15:214–217

    CAS  Google Scholar 

  25. Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D, Lopez-Llorca LV (2017) Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Sci Rep 7:16813. https://doi.org/10.1038/s41598-017-16874-5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Luan LQ, Ha VTT, Nagasawa N, Kume T, Yoshii F, Nakanishi TM (2005) Biological effect of irradiated chitosan on plants in vitro. Biotechnol Appl Biochem 41(1):49–57. https://doi.org/10.1042/BA20030219

    CAS  Article  Google Scholar 

  27. Lulai EC, Suttle JC, Olson LL, Neubauer JD, Campbell LG, Campbell MA (2016) Wounding induces changes in cytokinin and auxin content in potato tuber, but does not induce formation of gibberellins. J Plant Physiol 191:22–28. https://doi.org/10.1016/j.jplph.2015.11.006

    CAS  PubMed  Article  Google Scholar 

  28. Malik SK, Chaudhury R, Kalia RK (2005) Rapid in vitro multiplication and conservation of Garcinia indica: a tropical medicinal tree species. Sci Hortic 106:539–553. https://doi.org/10.1016/j.scienta.2005.05.002

    Article  Google Scholar 

  29. Mengatto L, Ferreyra MG, Rubiolo A, Rintoul I, Luna J (2013) Hydrophilic and hydrophobic interactions in cross-linked chitosan membranes. Mater Chem Phys 139(1):181–186. https://doi.org/10.1016/j.matchemphys.2013.01.019

    CAS  Article  Google Scholar 

  30. Mohanty P, Paul S, Das MC, Kumaria S, Tandon P (2012) A simple and efficient protocol for the mass propagation of Cymbidium mastersii: an ornamental orchid of Northeast India. AoB Plants 2012:pls023. https://doi.org/10.1093/aobpla/pls023

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Mondal MMA, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L (2012) Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci 6(5):918–921

    CAS  Google Scholar 

  32. Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190. https://doi.org/10.1016/j.plantsci.2006.02.006

    CAS  Article  Google Scholar 

  33. Nongdam P, Tikendra L (2014) Establishment of an efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl using seed culture. Sci World J. https://doi.org/10.1155/2014/740150

  34. Ohta K, Taniguchi A, Konishi N, Hosoki T (1999) Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience 34(2):233–234. https://doi.org/10.21273/HORTSCI.34.2.233

    CAS  Article  Google Scholar 

  35. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196(30):49–65. https://doi.org/10.1016/j.scienta.2015.09.031

    CAS  Article  Google Scholar 

  36. Pornpienpakdee P, Singhasurasak R, Chaiyasap P, Pichyangkura R, Bunjongrat R, Chadchawan S, Limpanavech P (2010) Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci Hortic 124(4):490–499. https://doi.org/10.1016/j.scienta.2010.02.008

    CAS  Article  Google Scholar 

  37. Prasertsongskun S, Chaipakdee W (2011) Effect chitosan on growth and development of Phalaenopsis cornucervi (Breda) Blume & Rchb.f. Khon Kaen University (KKU). Sci J 39(1):113–119

    Google Scholar 

  38. Quambusch M, Gruß S, Pscherer T, Winkelmann T, Bartsch M (2017) Improved in vitro rooting of Prunus avium microshoots using a dark treatment and an auxin pulse. Sci Hortic 220:52–56. https://doi.org/10.1016/j.scienta.2017.03.020

    CAS  Article  Google Scholar 

  39. Restanto DP, Santoso B, Kriswanto B, Supardjono S (2016) The application of chitosan for protocorm like bodies (PLB) induction of orchid (Dendrobium sp.) in vitro. Agric Agric Sci Procedia 9:462–468. https://doi.org/10.1016/j.aaspro.2016.02.164

    Article  Google Scholar 

  40. Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules 4:641–648. https://doi.org/10.1021/bm025724c

    CAS  PubMed  Article  Google Scholar 

  41. Sharma U, Kataria V, Shekhawat NS (2017) In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam: a leguminous tree with medicinal values. Physiol Mol Biol Plants 23(4):969–977. https://doi.org/10.1007/s12298-017-0459-2

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Sood N, Baker WL, Coleman CI (2008) Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr 88(4):1167–1175. https://doi.org/10.1093/ajcn/88.4.1167

    CAS  PubMed  Article  Google Scholar 

  43. Teixeira da Silva JA (2012) Jasmonic acid, but not salicylic acid, improves PLB formation of hybrid Cymbidium. Plant Tissue Cult Biotechnol 22(2):187–192. https://doi.org/10.3329/ptcb.v22i2.14209

    Article  Google Scholar 

  44. Vander P, Vårum KM, Domard A, El Gueddari NE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359. https://doi.org/10.1104/pp.118.4.1353

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O (1991) Determination of degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high field NMR spectroscopy. Carbohydr Res 211(1):17–23. https://doi.org/10.1016/0008-6215(91)84142-2

    PubMed  Article  Google Scholar 

  46. Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P, Taylor JE, Paul ND, Roberts MR (2012) Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. N Phytol 193(3):770–778. https://doi.org/10.1111/j.1469-8137.2011.03987.x

    CAS  Article  Google Scholar 

  47. Yamazaki J, Miyoshi K (2006) In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcate (Orchidaceae). Ann Bot 98:1197–1206. https://doi.org/10.1093/aob/mcl223

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The chitosan samples were supplied by Nour Eddine El Gueddari of the University of Münster, Münster, Germany. Nour Eddine El Gueddari passed away on February 8, 2018.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arda Acemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acemi, A. Chitosan versus plant growth regulators: a comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq.. Plant Cell Tiss Organ Cult 141, 327–338 (2020). https://doi.org/10.1007/s11240-020-01789-3

Download citation

Keywords

  • Biopolymer
  • Orchidaceae
  • Phytohormones
  • Polymerization degree
  • Tuber development