Skip to main content

Advertisement

Log in

Rapid production in maize seedlings of the Ag85B antigen of Mycobacterium avium subsp. paratuberculosis using an Agrobacterium-mediated transient expression system

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Transient expression systems for plants have several advantages for the development of innovative plant-made vaccines. This technology has the potential to render veterinary vaccines against relevant diseases, such as paratuberculosis, a chronic intestinal infectious disease affecting livestock. This study showed that Agrobacterium-mediated transient transformation of maize seedlings allows the production of the Ag85B antigen from Mycobacterium avium subsp. paratuberculosis (MAP) at levels up to 11.35 µg g−1 dry weight. Moreover, BALB/c mice orally and subcutaneously immunized with the maize-made Ag85B vaccine produced specific IgG and IgA antibodies. Therefore, this platform is proposed as a rapid approach to produce the functional MAPAg85B antigen at sufficient yields to induce specific humoral immune responses in animal testing, which constitutes the first step in the development of a plant-made oral vaccine against paratuberculosis.

Key message

This paper describes for the first time, the transient transformation of maize seedlings to produce Ag85B vaccine from Mycobacterium avium subsp. paratuberculosis. The plant-produced antigen showed strong immunoreactivity in immunized mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrat AS, Arnoult MH, Ahmadi BV, Rich KM, Gunn GJ, Stott AW (2018) A framework for estimating society’s economic welfare following the introduction of an animal disease: the case of Johne’s disease. PLoS ONE 13(6):e0198436

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    Article  CAS  PubMed  Google Scholar 

  • Chan H-T, Daniell H (2015) Plant-made oral vaccines against human infectious diseases—are we there yet? Plant Biotechnol J 13:1056–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan H-T, Xiao Y, Weldon WC et al (2016) Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol 14:2190–2200

    Article  CAS  Google Scholar 

  • Chikwamba R, McMurray J, Shou H et al (2002) Expression of a synthetic E. coli heat-labile enterotoxin B sub-unit (LT-B) in maize. Mol Breed 10:253–265

    Article  CAS  Google Scholar 

  • Faisal SM, Chen JW, Yan F, Chen TT, Useh NM, Yan W, Guo S, Wang SJ, Glaser AL, McDonough SP, Singh B, Davis WC, Akey BL, Chang YF (2013) Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD mutant as a vaccine candidate against challenge in a caprine model. Clin Vaccine Immunol 20:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvey M (2018) Mycobacterium avium subsp. paratuberculosis: a possible causative agent in human morbidity and risk to public health safety. Open Vet J 8(2):172–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover A, McLean JL, Troudt JLM, Foster C, Izzo L, Creissen E, MacDonald E, Troy A, Izzo AA (2016) Heat killed Saccharomyces cerevisiae as an adjuvant for the induction of vaccine-mediated immunity against infection with Mycobacterium tuberculosis. Vaccine 34:2798–2805

    Article  CAS  PubMed  Google Scholar 

  • Hayden CA, Fischer ME, Andrews BL, Chilton HC, Turner DD, Walker JH, Tizard IR, Howard JA (2015) Oral delivery of wafers made from HBsAg-expressing maize germ induces long-term immunological systemic and mucosal responses. Vaccine 33:2881–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Jin T, Wang J, Zhu X, Xu Y, Zhou X, Yang L (2015) A new transient expression system for large-scale production of recombinant proteins in plants based on air-brushing an Agrobacterium suspension. Biotechnol Rep 6:36–40

    Article  Google Scholar 

  • Johnston CD, Bannantine JP, Govender R, Endersen L, Pletzer D, Weingart H, Coffey A, O'Mahony J, Sleator RD (2015) Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius. Front Cell Infect Microbiol 4:120

    Google Scholar 

  • Karaman S, Cunnick J, Wang K (2012) Expression of the cholera toxin B subunit (CT-B) in maize seeds and a combined mucosal treatment against cholera and traveler's diarrhea. Plant Cell Rep 31:527–537

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene assembly. Plant Physiol 145:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathaperumal K, Park SU, McDonough S, Stehman S, Akey B, Huntley J, Wong S, Chang CF, Chang YF (2008) Vaccination with recombinant Mycobacterium avium subsp. paratuberculosis proteins induces differential immune responses and protects calves against infection by oral challenge. Vaccine 26:1652–1663

    Article  CAS  PubMed  Google Scholar 

  • Kathaperumal K, Kumanan V, McDonough S, Chen LH, Park SU, Moreira MA, Akey B, Huntley J, Chang CF, Chang YF (2009) Evaluation of immune responses and protective efficacy in a goat model following immunization with a coctail of recombinant antigens and a polyprotein of Mycobacterium avium subsp. paratuberculosis. Vaccine 27:123–135

    Article  CAS  PubMed  Google Scholar 

  • Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    Article  CAS  PubMed  Google Scholar 

  • Lin JJ (1995) Electrotransformation of agrobacterium. Methods Mol Biol 47:171–178

    CAS  PubMed  Google Scholar 

  • Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact 14:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34:969–980

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2008) Achieving sustainable global capacity for surveillance and response to emerging diseases of Zoonotic origin. Workshop Report. National Research Council (US) committee on achieving sustainable global capacity for surveillance and response to emerging diseases of Zoonotic origin. Washington (DC): National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK207998/

  • Pardini M, Giannoni F, Palma C, Iona E, Cafaro A, Brunori L, Rinaldi M, Fazio VM, Laguardia ME, Carbonella DC, Magnani M, Ensoli B, Fattorini L, Cassone A (2006) Immune response and protection by DNA vaccines expressing antigen 85B of Mycobacterium tuberculosis. FEMS Microbiol Lett 262:210–215

    Article  CAS  PubMed  Google Scholar 

  • Park SU, Kathaperumal K, McDonough S, Akey B, Huntley J, Bannantine JP, Chang YF (2008) Immunization with a DNA vaccine cocktail induces a Th1 response and protects mice against Mycobacterium avium subsp. paratuberculosis challenge. Vaccine 26:4329–4337

    Article  CAS  PubMed  Google Scholar 

  • Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M (2018) Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 36:6070–6076

    Article  CAS  PubMed  Google Scholar 

  • Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG (2017) Pathogenesis, molecular genetics, and genomics of Mycobacterium avium subsp. paratuberculosis, the etiologic agent of Johne’s disease. Front Vet Sci 4:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas M, Tiessen A, Ascencio F, Angulo C, Gomez-Anduro G (2015) Two promoters of beta-glucosidase paralogs (ZmBGlu2 and ZmBGlu5) highly active in tropical young maize hybrid seedlings. Plant Mol Biol Rep 33:1666–1674

    Article  CAS  Google Scholar 

  • Rosales-Mendoza S, Salazar-Gonzalez JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13:737–749

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Sández-Robledo C, Bañuelos-Hernández B, Angulo C (2017) Corn-based vaccines: current status and prospects. Planta 245:875–888

    Article  CAS  PubMed  Google Scholar 

  • Rosseels V, Marche S, Roupie V, Govaerts M, Godfroid J, Walravens K, Huygen K (2006) Members of the 30- to 32-kilodalton mycolyl transferase family (Ag85) from culture filtrate of Mycobacterium avium subsp. paratuberculosis are immunodominant Th1-type antigens recognized early upon infection in mice and cattle. Infect Immun 74:2002–2012

    Google Scholar 

  • Russell DA, Spatola LA, Dian T, Paradkar DR, Carroll JA, Schlittler MR (2004) Host limits to accurate human growth hormone production in multiple plant systems. Biotechnol Bioeng 89(7):775–782

    Article  CAS  Google Scholar 

  • Sainsbury F, Jutras PV, Vorster J, Goulet MC, Michaud DA (2016) Chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants. Front Plant Sci 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S (2015) Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 87:203–217

    Article  CAS  PubMed  Google Scholar 

  • Shahid N, Daniell H (2016) Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol J 14:2079–2099

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd CT, Scott MP (2009) Construction and evaluation of a maize chimeric promoter with activity in kernel endosperm and embryo. Biotechnol Appl Biochem 52:233–243

    Article  CAS  PubMed  Google Scholar 

  • Shippy DC, Lemke JJ, Berry A, Nelson K, Hines ME, Talaat AM (2017) Superior protection from live-attenuated vaccines directed against Johne's disease. Clin Vaccine Immunol 24(1):e00478–e00516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Gupta A, Prakash P, Anupurba S, Tripathi R, Srivastava GN (2016) Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments. BMC Infect Dis 16:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Mayor JM, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2002) Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. Vitro Cell Dev Biol Plant 38:11–17

    Article  CAS  Google Scholar 

  • Sun H-J, Uchii S, Watanable S, Ezura H (2006) A highly efficient transformation protocol for micro-tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pauton G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Uzoigwe JC, Khaitsa ML, Gibbs PS (2007) Epidemiological evidence for Mycobacterium avium subsp. paratuberculosis as a cause of Crohn's disease. Epidemiol Infect 7:1057–1068

    Article  Google Scholar 

  • Wang J, Sun Y, Li Y (2007) Maize (Zea mays) genetic transformation by co-cultivating germinating seeds with Agrobacterium tumefaciens. Biotechnol Appl Biochem 46(Pt 1):51–55

    CAS  PubMed  Google Scholar 

  • Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbial Rev 56:648–661

    CAS  Google Scholar 

  • Wu H-Y, Liu K-H, Wang Y-C, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM (2014a) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:1–16

    Article  CAS  Google Scholar 

  • Wu X, Xiong E, Wang W, Scali M, Cresti M (2014b) Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat Protoc 9:362–374

    Article  CAS  PubMed  Google Scholar 

  • Zhan YP, Uyemoto JK, Kirkpatrick BC (1998) A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. J Virol Methods 71:45–50

    Article  Google Scholar 

  • Zhang Z, Finer JJ (2016) Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.). Vitro Cell Dev Biol Plant 52:354–366

    Article  CAS  PubMed  Google Scholar 

  • Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant Cell Rep 19:569–575

    Article  PubMed  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protiocols 1:641–646

    Article  CAS  Google Scholar 

  • Zheng L, Liu G, Meng X, Li Y, Wang Y (2012) A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochemical Genet 50:761–769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Arturo Sierra-Beltran, Delia Rojas, and Martha Reyes for their technical support and Diana Fischer for editorial services. Current investigations from the group are supported by CONACYT/México (SEP-CONACYT 151818 to CA and CIBIOGEM-CONACyT 234606 to GG-A).

Author information

Authors and Affiliations

Authors

Contributions

MR, EM-E, GG-A, SR-M, FA and CA designed and supervised this study. MR designed and constructed the expression vector. MR and JH-G processed the samples by Western blot and ELISA. EM-E and SR-M evaluated immunogenicity. MR, ME-E, SR-M, GGA, FA and CA wrote the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Carlos Angulo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by Goetz Hensel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, M., Monreal-Escalante, E., Gomez-Anduro, G. et al. Rapid production in maize seedlings of the Ag85B antigen of Mycobacterium avium subsp. paratuberculosis using an Agrobacterium-mediated transient expression system. Plant Cell Tiss Organ Cult 141, 31–40 (2020). https://doi.org/10.1007/s11240-019-01764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01764-7

Keywords

Navigation