Agudelo-Romero P, Bortollot C, Pais MS, Tiburcio AF, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119
CAS
Article
Google Scholar
Biasi R, Bagni N, Costa G (2010) Endogenous polyamines in apple and their relationship to fruit set and fruit growth. Physiol Plant 73:201–205
Article
Google Scholar
Chen B, Wang C, Tian Y, Chu Q, Hu C (2015) Anatomical characteristics of young stems and mature leaves of dwarf pear. Sci Hortic 186:172–179
Article
Google Scholar
Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499
CAS
Article
Google Scholar
Cheng XQ, Zhu XF, Tian WG, Cheng WH, Hakim Sun J et al (2017) Genome-wide identification and expression analysis of polyamine oxidase genes in upland cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult 129:237–249
CAS
Article
Google Scholar
Falasca G, Franceschetti M, Bagni N, Altamura MM, Biasi R (2010) Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiol Biochem 48:565–573
CAS
Article
Google Scholar
Fernandes EM, Aroso IM, Mano JF, Covas JA, Reis RL (2014) Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites B 67:371–380
CAS
Article
Google Scholar
Ferreira R, Garcia H, Sousa AF, Guerreiro M, Duarte FJS, Freire C et al (2014) Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation. RSC Adv 4:2993–3002
CAS
Article
Google Scholar
Gonzalez ME, Marco F, Minguet EG, Carrasco Sorli P, Blázquez MA, Carbonell J et al (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277
CAS
Article
Google Scholar
Guo JX, Wang SF, Yu XY, Dong R, Li YZ, Mei XR et al (2018) Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol 177:339–351
CAS
Article
Google Scholar
Haque A, Ferdousy NE, Sharif-Ar-Raffi SA, Sagor GH (2018) Differential role of spermine and thermospermine in Arabidopsis thaliana in response to abiotic stresses. J Bangladesh Agric Univ 16:244–249
Article
Google Scholar
Harindra Champa WA, Gill MIS, Mahajan BVC, Bedi S (2015) Exogenous treatment of spermine to maintain quality and extend postharvest life of table grapes (Vitis vinifera L.) cv. flame seedless under low temperature storage. LWT Food Sci Technol 60:412–419
CAS
Article
Google Scholar
Heng W, Wang ZT, Jiang XH, Jia B, Liu P, Liu L et al (2016) The role of polyamines during exocarp formation in a russet mutant of ‘Dangshansuli’ pear (Pyrus bretchnederi Rehd.). Plant Cell Rep 35:1841–1852
CAS
Article
Google Scholar
Heng W, Huang H, Li F, Hou Z, Zhu L (2017) Comparative analysis of the structure, suberin and wax composition and key gene expression in the epidermis of ‘dangshansuli’ pear and its russet mutant. Acta Physiol Plant 39:150
Article
Google Scholar
Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT et al (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152
CAS
Article
Google Scholar
Kitashiba H, Hao YJ, Honda C, Moriguchi T (2005) Two types of spermine synthase gene: MdACL5 and MdSPMS are differentially involved in apple fruit development and cell growth. Gene 361:101–111
CAS
Article
Google Scholar
Lester GE (2000) Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Sci 160:105–112
CAS
Article
Google Scholar
Lin DB, Liu ZQ, Zhang SC (1994) Effects of polyamines on cold hardiness development of citrus. Acta Hortic Sin 21:222–226
Google Scholar
Liu JH, Nada K, Pang XM, Honda C, Kitashiba H, Moriguchi T (2006) Role of polyamines in peach fruit development and storage. Tree Physiol 26:791–798
CAS
Article
Google Scholar
Liu JH, Inoue H, Moriguchi T (2008) Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ Exp Bot 62:28–35
CAS
Article
Google Scholar
Maiale S, Sánchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. Plant Physiol 161:35–42
CAS
Article
Google Scholar
Malik AU, Singh Z (2004) Endogenous free polyamines of mangos in relation to development and ripening. J Am Soc Hortic Sci 129:280–286
Article
Google Scholar
Marco F, Buso E, Carrasco P (2014) Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Front Plant Sci 5:1–9
Article
Google Scholar
Maruri-Lopez I, Hernandez-Sanchez IE, Ferrando A, Carbonell J, Jimenez-Bremont JF (2015) Characterization of maize spermine synthase 1 (ZmSPMS1): evidence for dimerization and intracellular location. Plant Physiol Biochem 97:264–271
CAS
Article
Google Scholar
Moller SG, McPherson MJ (1998) Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encodingan H2O2-generating diamine oxidase. Plant J 13:781–791
CAS
Article
Google Scholar
Ono Y, Kim WD, Watanabe K, Sasaki A, Niitsu M, Berberich T et al (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42:867–876
CAS
Article
Google Scholar
Schieber A, Keller P, Carle R (2001) Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J Chromatogr A 910:265–273
CAS
Article
Google Scholar
Su GX, Yu BJ, Zhang WH, Liu YL (2007) Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem 45:560–566
Article
Google Scholar
Valero D, Martinez-Romero D, Serrano M (2002) The role of polyamines in the improvement of the shelf life of fruit. Trends Food Sci Technol 13:228–234
CAS
Article
Google Scholar
Wang MH, Ding MQ, Chen AQ, Zhang YT, Rong JK (2014) Over expression of a cotton GaSus3 gene enhancing the salt stress tolerance of Arabidopsis thaliana. Acta Phytophysiol Sin 50:901–908
CAS
Google Scholar
Wei J, Tanabe K (1994) Effect of temperature on polyamine, ACC contents, EFE activities and ethylene production in post-harvested pear fruits. Acta Hortic Sin 21:139–144
Google Scholar
Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ et al (2008) Over-expression of the apple Spd synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263
CAS
Article
Google Scholar
Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981
CAS
Article
Google Scholar
Zhang Z, Honda C, Kita M, Hu C, Nakayama M, Moriguchi T (2003) Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Mol Genet Genomics 286:799–807
Article
Google Scholar
Zhao LL, Song LQ, Liu Z, Xie XB, Zhai H, Hao YJ (2008) Changes of polyamines in the leaves of 4 apple rootstocks during low temperature stress. J Fruit Sci 25:151–156
CAS
Google Scholar
Zhu L, Zhu Y, Jia B, Zhang S (2009) Study on pear (Pyrus spp.) germplasm resources collected at the protection district of ‘Dangshansuli’ by ISSR markers. Hortic Environ Biotechnol 50:334–340
CAS
Google Scholar