Skip to main content
Log in

Transgenic potato lines expressing CP4-EPSP synthase exhibit resistance against glyphosate

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Potato crops are particularly vulnerable to weed competition from emergence to canopy closure and are subject to significant yield loss. Glyphosate is broad spectrum herbicide used to control weeds worldwide. In order to incorporate glyphosate resistant trait in four potato cultivars (Lady Olympia, Desiree, Agria and Granola), an efficient, cost effective, reproducible and stable Agrobacterium-mediated genetic transformation protocol was performed using leaf and internodal explants. Agrobacterium strain LBA4404 harboring newly modified recombinant binary vector pCAMHE-EPSPS containing EPSP synthase gene under the control of Cauliflower mosaic virus 35S promoter was used to infect explants. The overall transformation efficiency was 26.4%. Of the 280 plants transferred to greenhouse, 74 plants were found to be PCR positive with gene of interest. GUS histochemical, Southern blot, RT-qPCR, lateral flow dipstick assays confirmed integration and expression of EPSPS in primary transformants. The putative transgenic plants developed from these cultivars possessed enhanced resistance to glyphosate applications in T0 and first tuber generation. These transgenic potato lines could be used as source of germplasm for an efficient potato breeding program.

Key message

The article reports the development of potato transgenic lines with enhanced tolerance against glyphosate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldemita RR, Reaño IM, Solis RO, Hautea RA (2015) Trends in global approvals of biotech crops (1992–2014). GM Crops Food 6:150–166

    PubMed  PubMed Central  Google Scholar 

  • Americanos P (1994) Weed management in potatoes, weed management for developing Countries. In: Caseley RJ, Parker C (eds) Labrada. FAO, Rome, pp 295–300

    Google Scholar 

  • Amiri AN, Bakhsh A (2019) An effective pest management approach in potato to combat insect pests and herbicide. 3 Biotech 9:16. https://doi.org/10.1007/s13205-018-1536-0

    Article  PubMed  Google Scholar 

  • Anayol E, Bakhsh A, Karakoç ÖC, Onarıcı S, Köm D, Aasim M, Özcan SF, Barpete S, Khabbazi SD, Önol B, Sancak C (2016) Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10:83–94

    Google Scholar 

  • Bagri DS, Upadhyay DC, Jain SK, Upadhyay CP (2018) Biotechnological improvement of nutritional and therapeutic value of cultivated potato. Front Biosci 10:217–228

    Google Scholar 

  • Bakhsh A, Siddiq S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74

    CAS  Google Scholar 

  • Bakhsh A, Baloch FS, Hatipöğlu R, Ozkan H (2015) Use of genetic engineering, benefits and health concerns. In: Hui YH, Özgül Evranuz E (eds) Handbook of Vegetable Preservation and Processing, 2nd edn. CRC Press, Boca Raton, pp 81–112

    Google Scholar 

  • Banerjee AK, Prat S, Hannapel DJ (2006) Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 170:732–738

    CAS  Google Scholar 

  • Beaujean A, Sangwan R, Lecardonnel A, Sangwan-Norreel B (1998) Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants, an efficient protocol of transformation. J Exp Bot 49:1589–1595

    CAS  Google Scholar 

  • Brookes G, Barfoot P (2011) Global impact of biotech crops, environmental effects 1996–2008. AgBioforum 13(1):76–94. http://www.agbioforum.org

    PubMed  Google Scholar 

  • Brookes G, Barfoot P (2014) Economic impact of GM crops: the global income and production effects 1996-2012. GM Crops 5:1–11. https://doi.org/10.4161/gmcr.28098

    Article  Google Scholar 

  • Brown TA (2001) Southern blotting and related DNA detection techniques/encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Colquhoun JB, Konieczka CM, Rittmeyer RA (2009) Ability of potato cultivars to tolerate and suppress weeds. Weed Technol 23:287–291

    Google Scholar 

  • Conley SP, Binning LK, Connell TR (2001) Effect of cultivar, row spacing, and weed management on weed biomass, potato yield, and net crop value. Am J Potato Res 78:31–37

    Google Scholar 

  • Dale PJ, Hampson KK (1995) An assessment of morphogenic and transformation efficiency in a range of varieties of potato (Solanum tuberosum L.). Euphytica 85:101–108

    Google Scholar 

  • De Block M (1988) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor Appl Genet 76:767–774

    PubMed  Google Scholar 

  • Dill G (2005) Glyphosate resistant crops: history, status and future. Pest Manag Sci 61:219–224

    CAS  PubMed  Google Scholar 

  • Ducreux LMJ, Morris WL, Taylor MA, Millam S (2005) Agrobacterium mediated transformation of Solanum phureja. Plant Cell Rep 24:10–14

    CAS  PubMed  Google Scholar 

  • FAOSTAT data (2017) http://www.fao.org/home/en/ Accessed on 30 July, 2018

  • Felix J, Ivany J, Kegode GO, Doohan D (2008) Timing potato cultivation using weedcast model. Weed Sci. https://doi.org/10.1614/WS-08-019.1

    Article  Google Scholar 

  • Figueira E, Figueiredo L, MonteNeshich D (1994) Transformation of potato (Solanum tuberosum) cv. Mantiqueira using Agrobacterium tumefaciens and evaluation of herbicide resistance. Plant Cell Rep 3:666–670

    Google Scholar 

  • Göre ME (2017) Fungal seed borne pathogens infecting potato seed tubers from Turkey 2011–2014. J Plant Dis Protect 124:539–551

    Google Scholar 

  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331

    CAS  PubMed  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    PubMed  PubMed Central  Google Scholar 

  • Halterman D, Guenthner J, Collinge S, Butler N, Douches D (2016) Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato 93:1–20

    CAS  Google Scholar 

  • Hussain T, Aksoy E, Caliskan ME, Bakhsh A (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res 28:1–14. https://doi.org/10.1007/s11248-018-0109-7

    Article  CAS  Google Scholar 

  • Imran M, Asad S, Barboza AL, Galeano E, Carrer H, Mukhtar Z (2017) Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide. Physiol Mol Biol Plants 23:453–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • ISAAA (2016) Global status of commercialized Biotech/GM crops. ISAAA Brief No. 52. ISAAA:Ithaca, NY

  • ISAAA (2019) Potato (Solanum tubersom L.). GM events. http://www.isaaa.org/gmapprovaldatabase/advsearch/default.asp?CropID=16&TraitTypeID=1&DeveloperID=22&CountryID=US&ApprovalTypeID=Any. Accessed 7 Jan 2017

  • James C (2013) Global status of commercialized biotech/GM crops. ISAAA Brief No. 46 ISAAA, Ithaca, NY

  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against lepidopteran pest (Helicoverpa armigera). Span J Agric Res 9:296–300

    Google Scholar 

  • Kumar A (1995) Agrobacterium-mediated transformation of potato genotypes. In: Gartland KMA, Davey MR (eds) Methods in molecular biology, Agrobacterium protocols, 44. Humana Press, Totowa, pp 121–128

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2ΔΔC(T) method. Methods 25:402–408

    CAS  Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol Prog 26:21–25

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nain V, Jaiswal R, Dalal M, Ramesh B, Kumar A (2005) Polymerase chain reaction analysis of transgenic plants contaminated by Agrobacterium. Plant Mol Biol Rep 23:59–65

    CAS  Google Scholar 

  • Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88

    CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffman L, Evers D (2005) Housekeeping gene selection for real time PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    CAS  PubMed  Google Scholar 

  • Oxtoby E, Hughes MA (1990) Engineering herbicide tolerance into crops. Trends Biotechnol 8:61–65

    CAS  Google Scholar 

  • Padegimas L, Shulga OA, Skryabin KG (1994) Herbicide phosphinothricin tolerance in transgenic plants Nicotiana tabacum and Solanum tuberosum. Mol Biol 28:437–443

    CAS  Google Scholar 

  • Peixoto FP, Gomes-Laranjo J, Vicente JA, Madeira VMC (2008) Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green potato tuber calli. J Plant Physiol 165:1125–1133

    CAS  PubMed  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats A literature survey. Anal Bioanal Chem 393(2):569–582

    CAS  PubMed  Google Scholar 

  • Rao CK (2005) Transgenic Bt technology 3, expression of transgenes. http://www.fbae.org/2009/FBAE/website/special-topics_views_transgenic_bt_technology3.html

  • Rao AQ, Bakhsh A, Nasir IA, Riazuddin S, Husnain T (2011) Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr J Biotechnol 10:1818–1826

    CAS  Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Sopory SK, Singla-Pareek SL (2011) An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7:49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Soto N, Enriquez GA, Ferreira A, Corrada M, Fuentes A, Tiel K, Pujol M (2007) Efficient trans-formation of potato stem segments from cv. Desiree using phosphinothricin as selection marker. Biotechnol Applicada 24:139–144

    Google Scholar 

  • Southern EM (1975) Detection of specific sequence among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Tripathi B, Singh CM, Bhargava M (1989) Comparative efficacy of herbicides in potato under conditions of north-western Himalayas. Pesticides 23:37–38

    CAS  Google Scholar 

  • Üremiş İ, Caliskan ME, Uludağ A, Caliskan S (2009) Weed management in early-season potato production in the Mediterranean conditions of Turkey. Bulg J Agric Sci 15:423–434

    Google Scholar 

  • Veale MA, Slabbert MM, Van Emmenes L (2012) Agrobacterium-mediated transformation of potato cv. Mnandi for resistance to the potato tuber moth (Phthorimaea operculella). S Afr J Bot 80:67–74

    CAS  Google Scholar 

  • Wang Q, Xing S, Pan Q, Yuan F, Zhao J, Tian Y, Chen Y, Wang G, Tang K (2012) Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol 12:34

    PubMed  PubMed Central  Google Scholar 

  • Yang LT, Ding JY, Zhang CM, Jia JW, Weng HB, Liu WX, Zhang DB (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    CAS  PubMed  Google Scholar 

  • Zimdahl RL (2007) Fundamental of weed science, 3rd edn. Academic Press, New York, p 325

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Scientific and Technological Council of Turkey (Tübitak), Project No. 115O022. Authors thank Ms. Nurefşan Cırık for her help in transformation experiments. We also thank Dr. Halil Toktay for providing access to microscopes.

Author information

Authors and Affiliations

Authors

Contributions

AB designed the study, constructed recombinant vector, optimized transformation protocol for potato cultivars and supervised overall activities of the project. TH and IR did genetic transformation experiments, UD and MEÇ made significant contribution to molecular and application assays of transgenic plants.

Corresponding author

Correspondence to Allah Bakhsh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Communicated by Manoj Prasad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhsh, A., Hussain, T., Rahamkulov, I. et al. Transgenic potato lines expressing CP4-EPSP synthase exhibit resistance against glyphosate. Plant Cell Tiss Organ Cult 140, 23–34 (2020). https://doi.org/10.1007/s11240-019-01708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01708-1

Keywords

Navigation