Skip to main content
Log in

Optimized in vitro micro-tuber production for colchicine biosynthesis in Gloriosa superba L. and its anti-microbial activity against Candida albicans

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Gloriosa superba L. tubers are a rich source of commercially important colchicine and due to overexploitation, the species has become vulnerable. In the present investigation, in vitro tuber productions were carried out for its propagation and conservation. The in vitro and field-grown tubers were assessed for their colchicine content and antimicrobial activities. Maximum callusing was obtained when the medium was supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-furfurylaminopurine (kinetin). Among different auxins tested for in vitro tuberous root production, IAA (1.5 mg/L) induced 78.2% tuberous root per callus. In vitro micro-tuber raised in media supplemented with 1.5 mg/L thidiazuron (TDZ) recorded the highest response (72.9%) with 28.4 tubers per explant. Sucrose (6%) with TDZ (1.5 mg/L) produced significantly more micro-tubers per callus. Elicitor treatment with AlCl3 at 125 µM and 150 µM resulted in a significant increase in the micro-tuber and tuberous root production respectively. N6-(2-Isopentenyl) adenine (2ip) (1.0 mg/L) induced the highest frequency of in vitro micro-tuber sprouting and tuber formation compared to 6-benzylaminopurine (BAP) and 1-naphthalene acetic acid (NAA). The elicitor-treatments with AlCl3 significantly increased the colchicine content of in vitro tuberous root and tubers than that of the field grown tubers. The anti-microbial activity of in vitro raised tubers, tuberous roots and AlCl3 treated samples were significantly higher compared to the field grown samples. An optimized tissue culture system for mass propagation of G. superba with conservation aspects and the production of high-value colchicine is presented here, which can be used in various medicinal systems.

Key message

Manipulation of PGR’S significantly enhanced in vitro tuberization from noncorm bud explants. Elicitor treatment with AlCl3 enhanced the production of colchicine. HPLC analysis revealed significantly higher colchicine content in in vitro raised plants compared to field grown tubers. The study will help in mass propagation, conservation, and commercialization of Gloriosa superba L. for large scale production of colchicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anandhi S, Rajamani K (2012) In vitro tuberization of glory lily (Gloriosa superba L.). J Hortic For 4:81–84

    Google Scholar 

  • Anandhi S, Rajamani K, Jawaharlal M (2013) Propagation studies in Gloriosa superba. Med Aromat Plant Res J 1(1):1–4

    Google Scholar 

  • Arumugam A, Gopinath K (2012) In vitro micropropagation using corm bud explants: an endangered medicinal plant of Gloriosa superba L. Asian J Biotechnol 4:120–128

    Article  CAS  Google Scholar 

  • Basak UC, Dash D, Mahapatra AK (2012) Estimation of colchicine in tubers of Gloriosa superba L. originated from different agroclimatic zones of Odisha, India. Int J Pharmacog Phytochem Res 4:157–161

    Google Scholar 

  • Bhakuni DS, Jain S (1995) In: Chadha KL, Gupta R (eds) Advances in horticulture, vol 11. Malhotra Publishing House, Delhi, pp 98–99

    Google Scholar 

  • Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22:323–329

    Article  CAS  Google Scholar 

  • Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 19:710–717

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen F, Chiu Francis CK, Lo Cindy MY (2001) The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Micro Technol 28:100–105

    Article  CAS  Google Scholar 

  • Custers JBM, Bergervoet JHW (1994) Micropropagation of Gloriosa: towards a practical protocol. Sci Hortic 57(4):323–334

    Article  Google Scholar 

  • Farooqi AA, Kumaraswamy BK, Bojappa KN, Pusalkar VR, Gupta R (1993) Plantations of the clinically important Gloriosa superba. Indian Hortic 37:26–29

    Google Scholar 

  • Finnie JF, Van Staden J (1989) In vitro propagation of Sandersonia and Gloriosa. Plant Cell Tissue Organ Cult 19:151–158

    Article  Google Scholar 

  • Ghosh B, Mukherjee S, Jha TB, Jha S (2002) Enhanced colchicine production in root cultures of Gloriosa superba by direct and indirect precursors of the biosynthetic pathway. Biotechnol Lett 24:231–234

    Article  CAS  Google Scholar 

  • Ghosh S, Ghosh B, Jha S (2006) Aluminium chloride enhances colchicine production in root cultures of Gloriosa superba. Biotechnol Lett 28:497–503

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Ghosh B, Jha S (2007) In vitro tuberisation of Gloriosa superba L. on basal medium. Sci Hortic 114:220–223

    Article  CAS  Google Scholar 

  • Gontier E, Sangwan BS, Barbotin JN (1994) Effects of calcium, alginate, and calcium alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Daturainnoxia Mill. Plant Cell Rep 13:533–536

    Article  CAS  PubMed  Google Scholar 

  • Gunawan LW, Sutanto K, Lay SF (1990) In vitro shoot multiplication and plantlet formation of Gloriosa superba Linn. In: Abstracts of 7th international congress on plant tissue and cell culture. Amsterdam 24-29 IAPTC 103

  • Gupta BK (1999) Production of colchicine from G. superba tubers in cultivation and utilization of medicinal plants. CSIR J 1999:270–278

    Google Scholar 

  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538

    Article  CAS  PubMed  Google Scholar 

  • Hannapel DJ, Sharma P, Lin T, Banerjee AK (2017) The multiple signals that control tuber formation. Plant Physiol 174:845–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav SY, Hegde BA (2001) Somatic embryogenesis and plant regeneration in Gloriosa L. Indian J Exp Biol 39:943–946

    CAS  PubMed  Google Scholar 

  • Johnson WC, William OW (2002) Warfarin toxicity. J Vasc Surg 35:413–421

    Article  PubMed  Google Scholar 

  • Khan H, Ali Khan M, Mahmood T, Choudhary MI (2008) Antimicrobial activities of Gloriosa superba Linn (Colchicaceae) extracts. J Enzyme Inhib Med Chem 23:855–859

    Article  CAS  PubMed  Google Scholar 

  • Khandel AK, Khan S, Ganguly S, Bajaj A (2011) In vitro shoot initiation from apical shoot buds & meristems of Gloriosa superba L.—an endangered medicinal herb of high commercial value. Research 3:36–45

    Google Scholar 

  • Kirby WM, Yoshihara GM, Sundsted KS, Warren JH (1956) Clinical usefulness of a single disc method for antibiotic sensitivity testing. Antibiot Annu 1956–1957:892–897

  • Krause J (1986) Production of Gloriosa tubers from seeds. Acta Hortic 177:353–360

    Article  Google Scholar 

  • Kumar CN, Jadhav SK, Tiwari KL, Afaque Q (2015) In vitro Tuberization and colchicine content analysis of Gloriosa superba L. Biotechnology 14:142–147

    Article  CAS  Google Scholar 

  • Llina´s RR (1999) The squid giant synapse: a model for chemical transmission. Oxford University Press, London

    Google Scholar 

  • Mahajan R, Kapoor N, Billowria P (2016) Callus proliferation and in vitro organogenesis of Gloriosa superba: an endangered medicinal plant. Ann Plant Sci 5:1466–1471

    Article  Google Scholar 

  • Mukherjee S, Ghosh B, Jha S (2000) Enhanced forskolin production in genetically transformed cultures of Coleus forskohlii by casein hydrolysate and studies on growth and organization. Biotechnol Lett 22:133–136

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Naik PM, Al-Khayri J (2016) Abiotic and biotic elicitors—role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. INTECH, London, pp 247–277

    Google Scholar 

  • Nayak S (2000) In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regul 32:41–47

    Article  CAS  Google Scholar 

  • Nikhila GS, Sangeetha G, Nair AG, Pradeesh S, Swapna TS (2014) High frequency embryogenesis and organogenesis in Gloriosa superba L.—a plant in need of conservation. J Aquat Biol Fish 2:398–402

    Google Scholar 

  • Pandurangan B, Philomina D (2010) Effect of nutritional factors and precursors on formation of colchicine in Gloriosa superba in vitro. Res Biotechnol 1:29–37

    Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) Scopolamine and hyoscyamine production by hairy root cultures of Brugmansia candida: influence of calcium chloride, hemicellulase and theophylline. Biotechnol Lett 22:1653–1656

    Article  CAS  Google Scholar 

  • Prematilake DP, Mendis MH (1999) Micro-tuber of potato (Solanum tuuberosum L.) in vitro conservation and tissue culture. J Nat Sci Found Sri Lanka 27:17–28

    Article  Google Scholar 

  • Rai VR (2002) Rapid clonal propagation of Nothapodytes foetida (Wight) sleumer—a threatened medicinal tree. In Vitro Cell Dev Biol - Plant 38:347–351

    Article  Google Scholar 

  • Rao KB, Ramesh NP, Lakshmana Swamy P, Muralinath E (2014) In-vitro investigation on antimicrobial activity of Gloriosa superba Linn tubers against major food borne pathogens. Am J Drug Deliv Ther 1:009–020

    Google Scholar 

  • Rishi A (2011) In vitro callus induction and regeneration of healthy plants of Gloriosa superba Linn. Indian J Fundam Appl Life Sci 1:64–65

    Google Scholar 

  • Saikia M, Shrivastava K, Singh SS (2013) Effect of culture media and growth hormones on callus induction in Aquilaria malaccensis Lam., a medicinally and commercially. Asian J Biol Sci 6:96–105

    Article  CAS  Google Scholar 

  • Satish L, Rathinapriya P, Rency AS, Ceasar SA, Pandian S, Rameshkumar R, Ramesh M (2016) Somatic embryogenesis and regeneration using Gracilaria edulis and Padina boergesenii seaweed liquid extracts and genetic fidelity in finger millet (Eleusine coracana). J Appl Phycol 28:2083–2098

    Article  Google Scholar 

  • Shimasaki K, Sakuma K, Nishimura Y (2007) Tuber formation of Gloriosa superba using stem sections of branches under cultivation. In: III international symposium on acclimatization and establishment of micropropagated plants, vol 812, pp 245–250

  • Siva G, Sivakumar S, Prem Kumar G, Vigneswaran M, Vinoth S, Selvan AM, Senthil Kumar T, Jayabalan N (2015) Optimization of elicitation condition with jasmonic acid, characterization and antimicrobial activity of psoralen from direct regenerated plants of Psoralea corylifolia L. Biocatal Agric Biotechnol 4:624–631

    Article  Google Scholar 

  • Sivakumar G (2002) Gloriosa superba L. a very useful medicinal plant. In VK Singh, JN Govil, S Hashmi, G Singh, eds, Recent Progress in Medicinal Plants, Vol. 7, Ethnomedicine and Pharmacognosy, Part II. Series Sci Tech Pub Texas USA 465:82465-482

  • Sivakumar G, Krishnamurthy KV (2004) In vitro organogenetic responses of Gloriosa superba. Russian J Plant Physiol 51(5):713–721

    Article  CAS  Google Scholar 

  • Sivakumar G, Krishnamurthi KV, Rajendran TD (2003a) In vitro corm production in Gloriosa superba L., an ayurvedic medicinal plant. J Hortic Sci Biotechnol 78:450–453

    Article  Google Scholar 

  • Sivakumar G, Krishnamurthy KV, Rajendran TD (2003b) Embryoidogenesis and plant regeneration from leaf tissue of Gloriosa superba. Planta Med 69:479–481

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar G, Krishnamurthy KV, Hahn EJ, Paek KY (2004) Enhanced in vitro production of colchicine in Gloriosa superba L. an emerging industrial medicinal crop in South India. J Hortic Sci Biotech 79:602–605

    Article  CAS  Google Scholar 

  • Spollansky TC, Pitta-Alvarez SI, Giulietti AM (2000) Effect of jasmonic acid and aluminium on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron J Biotechnol 3:72–75

    Google Scholar 

  • Szabo E, Thelen A, Peterson M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485–489

    Article  CAS  Google Scholar 

  • Thakur RS, Potesllova H, Santavy F (1975) Substances from plants of the subfamily Wurmbaeoideae and their derivatives. Part LXXIX. Alkaloids of the plant Gloriosa superba L. Planta Med 28:201–209

    Article  CAS  PubMed  Google Scholar 

  • Von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151

    Article  PubMed  Google Scholar 

  • Yadav K, Aggarwal A, Singh N (2012) Actions for ex situ conservation of Gloriosa superba L.—an endangered ornamental cum medicinal plant. J Crop Sci Biotechnol 15:297–303

    Article  Google Scholar 

  • Yadav K, Aggarwal A, Singh N (2013) Arbuscula rmycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind Crop Prod 45:88–93

    Article  CAS  Google Scholar 

  • Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. S. Sivakumar would like to acknowledge the Department of Plant Science, Bharathidasan University, Tiruchirappalli for providing HPLC facility (UGC-SAP) for this research. Mr. S. Sathish acknowledges ICMR, New Delhi (No. 3/1/2/102/2018-Nut.) for fellowship support.

Author information

Authors and Affiliations

Authors

Contributions

SS designed and executed all the experiments. SS prepared the manuscript. GS, SV, GPK, PG, and MV contributed substantially in experimental analysis and discussion. TSK, RS, and NJ mobilized funds and critically evaluated the manuscript.

Corresponding author

Correspondence to Sivakumar Subiramani.

Additional information

Communicated by Wagner Campos Otoni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subiramani, S., Sundararajan, S., Govindarajan, S. et al. Optimized in vitro micro-tuber production for colchicine biosynthesis in Gloriosa superba L. and its anti-microbial activity against Candida albicans. Plant Cell Tiss Organ Cult 139, 177–190 (2019). https://doi.org/10.1007/s11240-019-01675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01675-7

Keywords

Navigation