Skip to main content

The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula

Abstract

Somatic embryogenesis is widely used in plant biotechnology, but regulatory networks underlying this process are not fully understood. This process is regulated by many protein and hormonal factors, among which WUSCHEL-related homeobox proteins are believed to play key roles. In this study, we aimed to identify the role of Medicago truncatula WOX9-1 (MtWOX9-1), an Arabidopsis thaliana WOX9 (STIMPY) homolog, in somatic embryogenesis. We demonstrated that the MtWOX9-1 promoter is active in somatic embryos, and overexpression of MtWOX9-1 leads to the increase in embryogenic capacity, as well as to the changes in expression levels of two MADS-box genes (AGL15 and AGL8 homologs), associated with embryogenesis. The data obtained suggest that stimulation of MtWOX9-1 expression may have positive impact on plant biotechnology in improving the transformation and regeneration capacity of recalcitrant plants.

Key message

MtWOX9-1 participates in somatic embryogenesis and can stimulate this process in tissue culture changing the expression level of different embryogenesis-associated genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R et al (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-zip I transcription factor HB1. Plant Cell 22:2171–2183. https://doi.org/10.1105/tpc.110.074823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atif RM, Boulisset F, Conreux C, Thompson R, Ochatt SJ (2013) In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of the model legume species Medicago truncatula. Physiol Plant 148:549–559. https://doi.org/10.1111/j.1399-3054.2012.01719.x

    Article  CAS  PubMed  Google Scholar 

  3. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K et al (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513. https://doi.org/10.1111/j.1365-313X.2008.03519.x

    Article  CAS  PubMed  Google Scholar 

  4. Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F et al (2013) Wuschel overexpression promotes SE and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep 32:675–686. https://doi.org/10.1007/s00299-013-1402-9

    Article  CAS  PubMed  Google Scholar 

  5. Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL et al (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and SE. Proc Natl Acad Sci USA 103:3468–3473. https://doi.org/10.1073/pnas.0511331103

    Article  CAS  PubMed  Google Scholar 

  6. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876. https://doi.org/10.1016/j.devcel.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  7. Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51. https://doi.org/10.1007/s00299-003-0649-y

    Article  CAS  PubMed  Google Scholar 

  8. Chen S-K (2009) The association of homeotic gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Dissertation, University of Newcastle

  9. Cosson V, Durand P, d’Erfurth I, Kondorosi A, Ratet P (2006) Medicago truncatula transformation using leaf explants. Methods Mol Biol 343:115–127. https://doi.org/10.1385/1-59745-130-4:115

    CAS  Article  PubMed  Google Scholar 

  10. das Neves LO, Duque SRL, de Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and Medicago truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405. https://doi.org/10.1007/s002990050593

    Article  Google Scholar 

  11. De Sousa Araújo S, Duque ASRLA, dos Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tissue Organ Cult 78:123–131. https://doi.org/10.1023/B:TICU.0000022540.98231.f8

    Article  Google Scholar 

  12. Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381. https://doi.org/10.1099/00221287-16-2-374

    CAS  Article  PubMed  Google Scholar 

  13. Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I (2011) Characterization of expression dynamics of WOX homeodomain transcription factors during SE in Vitis vinifera. J Exp Bot 62:1089–1101. https://doi.org/10.1093/jxb/erq349

    Article  CAS  PubMed  Google Scholar 

  14. Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548. https://doi.org/10.1242/dev.010298

    Article  CAS  PubMed  Google Scholar 

  15. Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    CAS  PubMed  Google Scholar 

  16. Guo F, Liu C, Xia H, Bi Y, Zhao C, Zhao S et al (2013) Induced expression of AtLEC1 and AtLEC2 differentially promotes SE in transgenic tobacco plants. PLoS ONE 8:e71714. https://doi.org/10.1371/journal.pone.0071714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M et al (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668. https://doi.org/10.1242/dev.00963

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A New Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. MPMI 10:307–315. https://doi.org/10.1094/MPMI.1997.10.3.307

    Article  CAS  Google Scholar 

  19. Iantcheva A, Vlahova M, Atanassov A, Duque AS, Araújo S, dos Santos DF, Fevereiro P (2006) Cell suspension cultures. In: Mathesius U, Journet EP, Sumner LW (ed) The Medicago truncatula handbook. http://www.noble.org/MedicagoHandbook/

  20. Iantcheva A, Revalska M, Zehirov G, Vassileva V (2014) Agrobacterium-mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. In Vitro Cell Dev Biol-Plant 50:149–157. https://doi.org/10.1007/s11627-013-9554-4

    Article  CAS  Google Scholar 

  21. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29:723–734. https://doi.org/10.1007/s00299-010-0859-z

    Article  CAS  PubMed  Google Scholar 

  23. Klimaszewska K, Overton C, Stewart D, Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647. https://doi.org/10.1007/s00425-010-1325-4

    Article  CAS  PubMed  Google Scholar 

  24. Kurdyukov S, Song Y, Sheahan MB, Rose RJ (2014) Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep 33:349–362. https://doi.org/10.1007/s00299-013-1535-x

    Article  CAS  PubMed  Google Scholar 

  25. Kurdyukov S, Song Y, Tiew TW-Y, Wang X-D, Nolan KE, Rose RJ (2015) Protocols for obtaining zygotic and somatic embryos for studying the regulation of early embryo development in the model legume Medicago truncatula. J Vis Exp 100:e52635. https://doi.org/10.3791/52635

    Article  Google Scholar 

  26. Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  27. Leibfried A, To JPC, Busch W et al (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172. https://doi.org/10.1038/nature04270

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  29. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW et al (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205. https://doi.org/10.1016/S0092-8674(00)81463-4

    Article  CAS  PubMed  Google Scholar 

  30. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J et al (2016) Morphogenic regulators baby boom and WUSCHEL improve monocot transformation [OPEN]. Plant Cell 28:1998–2015. https://doi.org/10.1105/tpc.16.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Magnani E, Jiménez-Gómez JM, Soubigou-Taconnat L, Lepiniec L, Fiume E (2017) Profiling the onset of SE in Arabidopsis. BMC Genom. https://doi.org/10.1186/s12864-017-4391-1

    Article  Google Scholar 

  32. Malik MR, Wang F, Dirpaul JM et al (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. https://doi.org/10.1104/pp.106.092932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771. https://doi.org/10.1105/tpc.7.11.1763

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Neves LO, Tomaz L, Fevereiro MPS (2001) Micropropagation of Medicago truncatula Gaertn. cv. Jemalong and Medicago truncatula ssp. Narbonensis. Plant Cell Tissue Organ Cult 67:81–84. https://doi.org/10.1023/A:1011699608494

    Article  CAS  Google Scholar 

  35. Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the somatic embryogenesis receptor-like kinase1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771. https://doi.org/10.1093/jxb/erp046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ochatt SJ (2011) Immature seeds and embryos of Medicago truncatula cultured in vitro. Methods Mol Biol 710:39–52. https://doi.org/10.1007/978-1-61737-988-8_4

    Article  CAS  PubMed  Google Scholar 

  37. Okonechnikov K, Golosova O, Fursov M, UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  38. Orłowska A, Kępczyńska E (2018) Identification of polycomb repressive complex1, trithorax group genes and their simultaneous expression with WUSCHEL, WUSCHEL-related Homeobox5 and SHOOT MERISTEMLESS during the induction phase of somatic embryogenesis in Medicago truncatula Gaertn. Plant Cell Tissue Organ Cult 134:345–356. https://doi.org/10.1007/s11240-018-1425-6

    Article  CAS  Google Scholar 

  39. Orłowska A, Igielski R, Łagowska K, Kępczyńska E (2017) Identification of LEC1, L1L and polycomb repressive complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell Tissue Organ Cult 129:119–132. https://doi.org/10.1007/s11240-016-1161-8

    Article  CAS  Google Scholar 

  40. Palovaara J, Hallberg H, Stasolla C, Hakman I (2010) Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytol 188:122–135. https://doi.org/10.1111/j.1469-8137.2010.03336.x

    Article  CAS  PubMed  Google Scholar 

  41. Pelletier JM, Kwong RW, Park S, Le BH, Baden R, Cagliari A et al (2017) LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA 114:E6710–E6719. https://doi.org/10.1371/journal.pone.0182055

    Article  CAS  PubMed  Google Scholar 

  42. Pires AS, Cabral MG, Fevereiro P, Stoger E, Abranches R (2008) High levels of stable phytase accumulate in the culture medium of transgenic Medicago truncatula cell suspension cultures. Biotechnol J 3:916–923. https://doi.org/10.1002/biot.200800044

    Article  CAS  PubMed  Google Scholar 

  43. Rose RJ (2019) Somatic embryogenesis in the Medicago truncatula model: cellular and molecular mechanisms. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00267

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula—implications for regenerability via SE. J Plant Physiol 155:788–791. https://doi.org/10.1016/S0176-1617(99)80097-2

    Article  CAS  Google Scholar 

  45. Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K (2016) Identification of putative homologs of Larix decidua to Babyboom (BBM), leafy Cotyledon1 (LEC1), WUSCHEL-related Homeobox2 (WOX2) and somatic embryogenesis receptor-like kinase (SERK) during somatic embryogenesis. Planta 243:473–488. https://doi.org/10.1007/s00425-015-2409-y

    Article  CAS  PubMed  Google Scholar 

  46. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522. https://doi.org/10.1101/gr.10.4.516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salvini M, Fambrini M, Giorgetti L, Pugliesi C (2016) Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L. Planta 243:199–215. https://doi.org/10.1007/s00425-015-2405-2

    Article  CAS  PubMed  Google Scholar 

  48. Santos RB, Pires AS, van der Hoorn RAL, Schiermeyer A, Abranches R (2019) Generation of transgenic cell suspension cultures of the model legume Medicago truncatula: a rapid method for Agrobacterium mediated gene transfer. Plant Cell Tissue Organ Cult 136:445–450. https://doi.org/10.1007/s11240-018-1525-3

    Article  CAS  Google Scholar 

  49. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. https://doi.org/10.1038/nature05703

    Article  CAS  PubMed  Google Scholar 

  50. Solís-Ramos LY, González-Estrada T, Nahuath-Dzib S, Zapata-Rodriguez LC, Castaño E (2008) Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tissue Organ Cult 96:279–287. https://doi.org/10.1007/s11240-008-9485-7

    Article  CAS  Google Scholar 

  51. Soyars CL, James SR, Nimchuk ZL (2016) Ready, aim, shoot: stem cell regulation of the shoot apical meristem. Curr Opin Plant Biol 29:163–168. https://doi.org/10.1016/j.pbi.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  52. Su YH, Liu YB, Bai B, Zhang XS (2014) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis SE. Front Plant Sci 5:792. https://doi.org/10.3389/fpls.2014.00792

    Article  PubMed  Google Scholar 

  53. Thakare D, Tang W, Hill K, Perry SE (2008) The MADS-domain transcriptional regulator Agamous-like15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiol 146:1663–1672. https://doi.org/10.1104/pp.108.115832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tvorogova VE, Lebedeva MA, Lutova LA (2015) Expression of WOX and PIN genes during somatic and zygotic embryogenesis in Medicago truncatula. Russ J Genet 51:1189–1198. https://doi.org/10.1134/S1022795415120121

    Article  CAS  Google Scholar 

  55. Tvorogova VE, Fedorova YA, Zhang F, Lutova LA (2016) Stenofolia gene and regulation of SE in Medicago truncatula. Russ J Plant Physiol 3:811–821. https://doi.org/10.1134/S1021443716060133

    Article  CAS  Google Scholar 

  56. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M et al (2012) Primer3: new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing protein family. Genome Biol 10:248. https://doi.org/10.1186/gb-2009-10-12-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang F, Perry SE (2013) Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264. https://doi.org/10.1104/pp.112.212282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wolabu TW (2015) Molecular analysis of WOX9 function in dicot leaf blade development and identification of Sorghum Florigens. Dissertation, Oklahoma State University

  60. Wu X, Dabi T, Weigel D (2005) Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr Biol 15:436–440. https://doi.org/10.1016/j.cub.2004.12.079

    Article  CAS  PubMed  Google Scholar 

  61. Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030. https://doi.org/10.1101/gad.17258511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang T-Q, Lian H, Zhou C-M, Xu L, Jiao Y, Wang J-W (2017a) A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29(5):1073–1087. https://doi.org/10.1105/tpc.16.00863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Z, Tucker E, Hermann M, Laux T (2017b) A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell 40:264.e4–277.e4. https://doi.org/10.1016/j.devcel.2017.01.002

    Article  CAS  Google Scholar 

  64. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577. https://doi.org/10.1105/tpc.109.068890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng W, Zhang X, Yang Z, Wu J, Li F, Duan L et al (2014) At WUSCHEL promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS ONE 9:e87502. https://doi.org/10.1371/journal.pone.0087502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359. https://doi.org/10.1046/j.1365-313X.2002.01289.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation Project No. 16-16-10011, the grant from Russian Foundation for Basic Research No. 17-04-01708 and the grant of SPbU Alumni Association. Authors acknowledge the Research Resource Center for Molecular and Cell Technologies of Saint-Petersburg State University for DNA sequencing and the equipment used in this study. Authors are grateful to Andrew Matveenko for discussing the data in the process of preparing this paper.

Author information

Affiliations

Authors

Contributions

VT, YF, TW, FZ, MT, and LL designed the experiments. VT, YF, EP, AK, EE, VK, TW, and FZ performed the experiments. VT, YF, and MT analyzed the data. VT, YF, VK, TW, FZ, and LL wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Varvara E. Tvorogova.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 45 kb)

Sup. Figure 1. Summary of cultivation methods and lines used in the study. Supplementary material 2 (EPS 60 kb)

11240_2019_1648_MOESM3_ESM.tif

Sup. Figure 2. (a-d) Expression of pMtWOX9-1:GUS construction in de novo transformed T0 embryogenic calli at 68th d.o.c. Blue staining indicates the expression of GUS reporter gene. White arrows indicate somatic embryos at torpedo and cotyledonary stages, black arrow indicates somatic embryo at globular stage. The results were observed in 4 out of 4 calli. Supplementary material 3 (TIFF 6835 kb)

11240_2019_1648_MOESM4_ESM.eps

Sup. figure 3. (a) Boxplot reflecting SE intensity in liquid medium for wt and w9OE lines. Number of somatic embryos per explant is demonstrated. For wt and w9OE, 5 and 8 explants were analysed, respectively. 1,5 ml of liquid medium and 2-3 explants per bottle were used. (b) MtWOX9-1 wildtype frameshift isoform expression dynamics during in vitro cultivation of explants of embryogenic 2HA (full line) and non-embryogenic A17 (dashed line) lines. The graphs show the results of one biological repeat, representative for two additional independent experiments. The error bars represent sd of three technical repeats. (c) Expression levels of MtAGL8 in different organs according to M. truncatula Gene Expression Atlas (Benedito et al. 2008). (d) Expression levels of MtWOX9-1 in individual wt and w9OE callus samples. The mean for three technical repeats is demonstrated. Supplementary material 4 (EPS 57 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tvorogova, V.E., Fedorova, Y.A., Potsenkovskaya, E.A. et al. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Organ Cult 138, 517–527 (2019). https://doi.org/10.1007/s11240-019-01648-w

Download citation

Keywords

  • WOX genes
  • Somatic embryogenesis
  • Regeneration
  • In vitro culture