Somatic embryogenesis and shoot organogenesis from the hypocotyl slices and free radical scavenging activity of regenerants of collard greens (Brassica oleracea L. var. acephala)

Abstract

Brassica oleracea var. acephala is an important leafy vegetable that has been widely consumed as a high-nutrient, low-calorie food. Because of the plant’s biennial and self-incompatibility nature, biotechnological approaches are alternative way for propagation and breeding improvements. Since tissue culture studies have been focused in other B. oleracea representatives, the aim of the present study was to achieve effective regeneration protocol distinctive for collard greens, and evaluate the total phenolic content and antioxidant activity of regenerants. The effect of 3 cytokinins [thidiazuron (TDZ), 6-benzyladenine (BA) and 6-furfuryladenine (kinetin, KIN)] at increasing concentrations (0, 5, 7.5, 10, 20 or 30 µM) in combination with tenfold lower concentration of 1-naphtaleneacetic acid (NAA) (0, 0.5, 0.75, 1, 2 or 3 µM, respectively) on the regeneration from hypocotyl slices was studied. Histological analysis revealed the two regeneration pathways, somatic embryogenesis and shoot organogenesis, simultaneously occurred in the same explant, regardless of the cytokinin/NAA combinations used. The regeneration frequency of 95.9%, with 7.5 morphogenic structures regenerated per explant, and the healthy appearance of regenerated plants indicated the optimal combination 20 µM TDZ + 2 µM NAA. TDZ at 5 µM provided the high somatic embryo proliferation rate by generation of secondary embryos (7.79) along with the lowest rate of their abnormalities. Embryo-developed plants were successfully acclimatised (above 90%). The plants regenerated and proliferated on TDZ-containing media had higher total phenolic content that correlated with the highest free radical scavenging activity (IC50 = 19.09 µg ml− 1).

Key message

Somatic embryogenesis and shoot organogenesis from hypocotyl slices of the collard greens were established. The combination 20 µM TDZ + 2 µM NAA was optimal for regeneration providing higher total phenolic content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akmal M, Nafis T, Mirza KJ, Alam P, Mohammad A, Mujib A, Abdin MZ (2011) High frequency somatic embryogenesis in mustard crop (Brassica juncea L. cv. Pusa Jai kisan): microscopic and histological analyses. Aust J Crop Sci 5:1783–1789

    CAS  Google Scholar 

  2. Al Shamari M (2014) Somatic embryogenesis and cryopreservation of cauliflower (Brassica oleracea var. botrytis). PhD thesis, School of Biological Sciences, Faculty of Science and Environment, University of Plymouth, UK

  3. Aremu AO, Gruz J, Šubrtová M, Szüčová L, Doležal K, Bairu MW, Finnie JF, Van Staden J (2013) Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J Plant Physiol 170:1303–1308

    Article  CAS  PubMed  Google Scholar 

  4. Bairu MW, Amoo SO, Van Staden J (2011) Comparative phytochemical analysis of wild and in vitro-derived greenhouse-grown tubers, in vitro shoots and callus-like basal tissues of Harpagophytum procumbens. S Afr J Bot 77:479–484

    Article  CAS  Google Scholar 

  5. Bassuner BM, Lam R, Lukowitz W, Yeung EC (2007) Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep 26:1–11

    Article  CAS  PubMed  Google Scholar 

  6. Brand-Williams W, Cuvelier ME, Berset C (1995) Use a free radical method to evaluate antioxidative activity. LWT - Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  7. Cao J, Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21:789–796

    CAS  PubMed  Google Scholar 

  8. Cao J, Shelton AM, Earle ED (2005) Development of transgenic collards (Brassica oleracea L. var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Protect 24:804–813

    Article  CAS  Google Scholar 

  9. Cardoza V, Stewart CN Jr (2004) Brassica biotechnology: progress in cellular and molecular biotechnology. In Vitro Cell Dev Biol Plant 40:542–551

    Article  CAS  Google Scholar 

  10. Castillo P, Marquez J, Rubluo A, Hernandez G, Lara M (2000) Plant regeneration from callus and suspension cultures of Valeriana edulis ssp. procera via simultaneous organogenesis and somatic embryogenesis. Plant Sci 151:115–119

    Article  CAS  PubMed  Google Scholar 

  11. Ćosić T, Vinterhalter B, Vinterhalter D, Mitić N, Cingel A, Savić J, Bohanec B, Ninković S (2013) In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cell Dev Biol—Plant 49:294–303

    Article  Google Scholar 

  12. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288

    Article  CAS  Google Scholar 

  13. Dai XG, Shi XP, Ye YM, Fu Q, Bao MZ (2009) High frequency plant regeneration from cotyledon and hypocotyl explants of ornamental kale. Biol Plant 53:769–773

    Article  Google Scholar 

  14. Deo PC, Tyagi AP, Taylor M, Harding R, Becker D (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. SPJNAS 28:27–40

    Google Scholar 

  15. Feng H, Guo S, Jiang FY (2009) Microspore-derived embryos and plant regeneration in edible kale (Brassica oleracea L. var. acephala DC.) Acta Hortic Sin 36:587–592

    CAS  Google Scholar 

  16. Ferreres F, Sousa C, Vrchovská V, Valentão P, Pereira JA, Seabra RM, Andrade PB (2006) Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. Eur Food Res Technol 222:88–98

    Article  CAS  Google Scholar 

  17. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.). Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  18. Gambhir G, Srivastava DK (2015) Thidiazuron induces high frequency shoot regeneration in leaf and petiole explants of cabbage (Brassica Oleracea L. Var. Capitata). J Biotechnol Biomater 5:172. https://doi.org/10.4172/2155-952X.1000172

    Article  Google Scholar 

  19. Gerszberg A (2018) Tissue culture and genetic transformation of cabbage (Brassicaoleracea var. capitata): an overview. Planta 248:1037–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T (2015) In vitro regeneration of eight cultivars of Brassica oleracea. var. capitata. In Vitro Cell Dev Biol Plant 51:80–87

    Article  PubMed  Google Scholar 

  21. Ghasemzadeh A, Jaafar HZE, Rahmat A, Wahab PEM, Halim MRA (2010) Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int J Mol Sci 11:3885–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghnaya AB, Charles G, Branchard M (2008) Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars of Brassica napus L. Plant Cell Tiss Organ Cult 92:25–30

    Article  Google Scholar 

  23. Gong Y, Sohn H, Xue L, Firestone GL, Bjeldanes LF (2006) 3,3′-Diindolylmethane is a novel mitochondrial H+-ATP synthase inhibitor that can induce p21Cip1/Waf1 expression by induction of oxidative stress in human breast cancer cells. Cancer Res 66:4880–4887

    Article  CAS  PubMed  Google Scholar 

  24. Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H (2015) The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tiss Organ Cult 122:699–708

    Article  CAS  Google Scholar 

  25. Gulshan C, Darshna C, Madan V, Manish S, Pawan KJ (2008) TDZ-induced direct shoot organogenesis and somatic embryogenesis on cotyledonary node explants of lentil (Lens culinaris Medik.). Physiol Mol Biol Plants 14:347–353

    Article  Google Scholar 

  26. Guo DP, Zhu ZJ, Hu XX, Zheng SJ (2005) Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of team mustard (Brassica juncea var. tsatsai). Plant Cell Tiss Organ Cult 83:123–127

    Article  CAS  Google Scholar 

  27. Jeong B, Sivanesan I (2015) Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophularia takesimensis Nakai. Plant Cell Tiss Organ Cult 123:607–618

    Article  CAS  Google Scholar 

  28. Jin RG, Liu YB, Tabashnik B, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Biol Plant 36:231–237

    Article  CAS  Google Scholar 

  29. Jonoubi P, Mousavi A, Majd A, Salmanian AH, Javaran MJ, Daneshian J (2005) Efficient regeneration of Brassica napus L. hypocotyls and genetic transformation by Agrobacterium tumefaciens. Biol Plant 49:175–180

    Article  CAS  Google Scholar 

  30. Kahlon TS, Chiu M-CM, Chapman MH (2008) Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage. Nutr Res 28:351–357

    Article  CAS  PubMed  Google Scholar 

  31. Kim NR, An G, Park MC (2001) High-frequency regeneration and transformation of Raphanus sativus. J Plant Biol 44:231–235

    Article  CAS  Google Scholar 

  32. Lännenpää M (2014) Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Rep 33:1377–1388

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Krasnyanski SF, Korban SS (2002) Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J Plant Physiol 159:313–319

    Article  CAS  Google Scholar 

  34. Li X, Peng RH, Fan HQ, Xiong AS, Yao QH, Cheng ZM, Li Y (2005) Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage. Plant Cell Rep 23:710–715

    Article  CAS  PubMed  Google Scholar 

  35. Lillo C, Olsen JE (1989) Growth and shoot formation in protoplast-derived calli of Brassica oleracea ssp. acephala and ssp. capitata. Plant Cell Tiss Organ Cult 17:91–100

    Article  Google Scholar 

  36. Liu XN, Zhang XQ, Sun JS (2007) Effects of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonii and Hypericum perforatum. Plant Growth Regul 53:207–214

    Article  CAS  Google Scholar 

  37. Macalalad EA, Robidillo CJT, Marfori EC (2016) Influence of different cytokinins on the growth, [6]-Gingerol production and antioxidant activity of in vitro multiple shoot culture of ginger (Zingiber officinale Roscoe). Res J Med Plant 10:194–200

    Article  CAS  Google Scholar 

  38. Madden JI, Jones CS, Auer CA (2005) Modes of regeneration in Pelargonium x hortorum (Geraniaceae) and three closely related species. In Vitro Cell Dev Biol- Plant 41:37–46

    Article  Google Scholar 

  39. Maes L, Goossens A (2010) Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species- and trichome-specific regulatory mechanisms. Plant Signal Behav 5:205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. Nat Biotechnol 29:144–155

    CAS  Google Scholar 

  41. Manchali S, Murthy KNC, PatilBS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–104

    Article  CAS  Google Scholar 

  42. Metz TD, Dixit R, Earle ED (1995) Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    Article  CAS  PubMed  Google Scholar 

  43. Miller-Cebert RL, Sistani NA, Cebert E (2009) Comparative mineral composition among canola cultivars and other cruciferous leafy greens. J Food Compos Anal 22:112–116

    Article  CAS  Google Scholar 

  44. Mithila J, Hall JC, Victor JMR, Saxena PK (2003) Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408–414

    Article  CAS  PubMed  Google Scholar 

  45. Munshi MK, Roy PK, Kabir MH, Ahmed G (2007) In vitro regeneration of cabbage (Brassica oleracea L. var. capitata) through hypocotyl and cotyledon culture. Plant Tissue Cult Biotechnol 2:131–136

    Google Scholar 

  46. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  47. Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    Article  CAS  Google Scholar 

  48. Ning GG, Bai SP, Bao MZ, Liu L (2007) Factors affecting plantlet regeneration from in vitro cultured immature embryos and cotyledons of Prunus mume “Xue mei”. In Vitro Cell Dev Biol Plant 43:95–100

    Article  Google Scholar 

  49. Niu RQ, Zhang Y, Tong Y, Liu ZY, Wang YH, Feng H (2015) Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale. Genet Mol Res 14:3897–3909

    Article  CAS  PubMed  Google Scholar 

  50. NYSVegExpo (2017) http://www.hort.cornell.edu/expo/proceedings/2017/Colecrops_Breeding%20Swegarden_N. YSVegExpo_Jan2017.pdf

  51. Olson SM, Freeman JH (2008) Collard cultivar evaluations in northern Florida. HortTechnology 18:536–538

    Article  Google Scholar 

  52. Pavlović S, Vinterhalter B, Zdravković-Korać S, Vinterhalter D, Zdravković J, Cvikić D, Mitić N (2013) Recurrent somatic embryogenesis and plant regeneration from immature zygotic embryos of cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis). Plant Cell Tiss Organ Cult 113:397–406

    Article  CAS  Google Scholar 

  53. Pereira JV, Santos HB, Agra MF, Guedes DN, Modesto-Filho J (2006) Use of cabbage leaves (Brassica oleracea var. acephala) in the stabilization of bone mass after menopause. Braz J Pharmacognosy 16:345–349

    Article  Google Scholar 

  54. Pogrebnyak N, Markley K, Smirnov Y, Brodzik R, Bandurska K, Koprowski H, Golovkin M (2006) Collard and cauliflower as a base for production of recombinant antigens. Plant Sci 171:677–685

    Article  CAS  Google Scholar 

  55. Polya GM (2003) Biochemical targets of plant bioactive compounds. A pharmacological reference guide to sites of action and biological effects. CRC Press, Boca Raton

    Google Scholar 

  56. Puddephat J, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2:185–210

    Article  Google Scholar 

  57. Qamar Z, Hossain MB, Nasir IA, Tabassum B, Husnain T (2014) In vitro development of cauliflower synthetic seeds and development of plantlets in vivo. Plant Tiss Cult Biotech 24:27–36

    Article  Google Scholar 

  58. Rafat A, Aziz MA, Rashid AA, Abdullach SNA, Kamaladini H, Sirchi MHT, Javadi MB (2010) Optimization of Agrobacterium tumefaciens-mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. capitata) cv. KY Cross with AtHSP101 gene. Sci Hortic 124:1–8

    Article  CAS  Google Scholar 

  59. Rajeswari V, Paliwal K (2008) In vitro adventitious shoot organogenesis and plant regeneration from seedling explants of Albizia odoratissima L.f. (Benth.). In Vitro Cell Dev Biol Plant 44:78–83

    Article  CAS  Google Scholar 

  60. Singh ND, Sahoo L, Sarin NB, Jaiwal PK (2003) The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Sci 164:341–347

    Article  CAS  Google Scholar 

  61. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  62. Sretenović-Rajičić T, Ninković S, Miljuš-Dukić J, Vinterhalter B, Vinterhalter D (2006) Agrobacterium rhizogenes-mediated transformation of Brassica oleracea var. sabauda and B. oleracea var. capitata. Biol Plant 50:525–530

    Article  Google Scholar 

  63. Sretenović-Rajičić T, Ninković S, Uzelac B, Vinterhalter B, Vinterhalter D (2007) Effects of plant genotype and bacterial strain on Agrobacterium tumefaciens-mediated transformation of Brassica oleracea L. var. capitata. Russ J Plant Physiol 54:653–658

    Article  CAS  Google Scholar 

  64. Taghizadeh M, Solgi M (2015) Introduction of commercial protocol for in vitro proliferation of Brassica oleracea var. acephala. Iranian J Hortic Sci 45:475–484

    Google Scholar 

  65. USDA (2012) from https://www.nass.usda.gov/Publications/AgCensus/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf

  66. Wang Y, Tong Y, Li Y, Zhang Y, Zhang J, Feng J, Feng H (2011) High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci Hortic 130:296–302

    Article  CAS  Google Scholar 

  67. Wojdyło A, Oszmiański J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    Article  CAS  Google Scholar 

  68. Woo SM, Wetzstein HY (2008) An efficient tissue culture regeneration system for Georgia plume, Elliottia racemosa, a threatened Georgia endemic. HortSci 43:447–453

    Article  Google Scholar 

  69. Xiushu Z, Mingyang L, Wenling Z, Fan L (2009) Establishment of high adventitious shoot regeneration system of ornamental kale. Genomics Appl Biol 28:141–148

    Google Scholar 

  70. Yildiz M (2012) The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. Intech, Rijeka, pp 63–90

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through Contract No. 173015.

Author information

Affiliations

Authors

Contributions

NB supervised the whole study and wrote the manuscript. BV performed hystological analysis. DKM performed phytochemical analysis. JM and LJT produced and maintained in vitro cultures. NG cultivated plants in greenhouse. SZK helped with experimental design and contributed to the writing and correction of the manuscript.

Corresponding author

Correspondence to Nevena Banjac.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Alison M.R. Ferrie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banjac, N., Vinterhalter, B., Krstić-Milošević, D. et al. Somatic embryogenesis and shoot organogenesis from the hypocotyl slices and free radical scavenging activity of regenerants of collard greens (Brassica oleracea L. var. acephala). Plant Cell Tiss Organ Cult 137, 613–626 (2019). https://doi.org/10.1007/s11240-019-01595-6

Download citation

Keywords

  • Adventitious shoots
  • Collard greens
  • Cytokinins
  • Regeneration
  • Somatic embryos
  • Somatic embryos proliferation
  • Total phenolics