Abstract
Genipa americana L. is a species with high economic potential with considerable promise in the fruit, medicinal and agroindustrial fields. The in vitro cultivation of genipapo is an alternative that may overcome the difficulties imposed by the traditional propagation system, allowing the multiplication of plants on a large scale and using technologies in conservation programs and to improve phytopharmaceutical production. In this context, the aim of this work was to evaluate the morphogenetic potentials of different sources of explants to establish an efficient system for in vitro regeneration of G. americana. For callus induction, shoots differentiation and further plant regeneration, segments of hypocotyl, root and leaf from in vitro established seedlings were used. The explants were inoculated in MS medium supplemented with 6-benzylaminopurine (BAP) at concentrations of 0.0, 1.12, 2.25 and 3.37 mg L−1. The morphogenetic pattern and regeneration capacity showed correlations with the explant source and BAP concentration. MS medium supplemented with 1.12 mg L−1 BAP proved to be optimum for adventitious shoots induction in segments hypocotyl. It was possible to obtain a efficient protocol for the in vitro regeneration of G. americana that allowed high shoot regeneration rates (80%) using hypocotyl segments with low concentrations of BAP (1.12 mg L−1). The regenerated plantlets showed a high capacity for acclimatization, presenting 90% survival rate 30 days after exposure to the ex vitro conditions.
Similar content being viewed by others
References
Almeida CS, Silva AVC, Araújo AG, Lédo AS (2015) Respostas morfogenéticas de jenipapeiro em diferentes condições de cultura in vitro. Rev Caatinga 28:58–64
Alves JSF, Medeiros LA, Fernandes-Pedrosa MF, Araújo RM, Zucolotto SM (2017) Iridoids from leaf extract of Genipa americana. Rev Bras Farmacogn 27:641–644. https://doi.org/10.1016/j.bjp.2017.03.006
Asakura I, Hoshino Y (2017) Evaluation of plant regeneration ability of different explants and establishment of an efficient regeneration system using immature seeds in Actinidia kolomikta, a cold-hardy kiwifruit relative. Sci Hortic 220:275–282. https://doi.org/10.1016/j.scienta.2017.04.012
Bhuvaneshwari K, Gokulanathan A, Jayanthi M, Govindasamy V, Milella L, Lee S, Yang DC, Girija S (2016) Can Ocimum basilicum L. and Ocimum tenuiflorum L. in vitro culture be a potential source of secondary metabolites? Food Chem 194:55–60. https://doi.org/10.1016/j.foodchem.2015.07.136
Brauch JE, Zapata-Porras SP, Buchweitz M, Aschoff JK, Carle R (2016) Jagua blue derived from Genipa americana L. fruit: a natural alternative to commonly used blue food colorants? Food Res Int 89:391–398.https://doi.org/10.1016/j.foodres.2016.08.029
Cappelletti R, Sabbadini S, Mezzetti B (2016) The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Sci Hortic 207:117–124. https://doi.org/10.1016/j.scienta.2016.05.016
FAO (2017) The future of food and agriculture: trend and challenges. Rome. https://reliefweb.int/sites/reliefweb.int/files/resources/a-i6583e.pdf. Accessed 16 Mar 2018
Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciênc Agrotecnol 38:109–112. https://doi.org/10.1590/S1413-7054201400020000
Ferreira S, Batista D, Serrazina S, Pais MS (2009) Morphogenesis induction and organogenic nodule differentiation in Populus euphratica Oliv. leaf explants. Plant Cell Tissue Organ Cult 96:35–43. https://doi.org/10.1007/s11240-008-9457-y
Fortes AM, Santos F, Pais MS (2010) Review article: organogenic nodule formation in hop: a tool to study morphogenesis in plants with biotechnological and medicinal applications. J Biomed Biotechnol 2010:1–16. https://doi.org/10.1155/2010/583691
Joint FAO, WHO (2017) Evaluation of certain food additives. Eighty-fourth report of the joint. Expert committiee on food additives. http://apps.who.int/iris/bitstream/10665/2594 83/1/9789241210164-eng.pdf
Lee JM, Pijut PM (2017) Adventitious shoot regeneration from in vitro leaf explants of Fraxinus nigra. Plant Cell Tissue Organ Cult 130:335–343. https://doi.org/10.1007/s11240-017-1228-1
Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings of International Plant Propagators’ Society, vol 30, pp 421–427
Magistrali PR, José AC, Faria JMR, Gasparin E (2013) Physiological behavior of Genipa americana L. seeds regarding the capacity for desiccationand storage tolerance. J Seed Sci 35:495–500. https://doi.org/10.1590/S2317-15372013000400011
Magyar-Tábori K, Dobránszki J, Silva JAT, Bulley SM, Hudák I (2010) the role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult 101:251–267. https://doi.org/10.1007/s11240-010-9696-6
Manoharan R, Tripathi JM, Tripathi L (2016) Plant regeneration from axillary bud derived callus in white yam (Dioscorea rotundata). Plant Cell Tissue Organ Cult 126:481–497. https://doi.org/10.1007/s11240-016-1017-2
Mignolli F, Mariotti L, Picciarelli P, Vidoz ML (2017) Differential auxin transport and accumulation in the stem base lead toprofuse adventitious root primordia formation in the aerial roots (aer) mutant of tomato (Solanum lycopersicum L.). J Plant Physiol 213:55–65. https://doi.org/10.1016/j.jplph.2017.02.010
Mikuła A, Pozoga M, Grzyb M, Rybczyn JJ (2015) An unique system of somatic embryogenesis in the tree fern Cyathea delgadii Sternb.: the importance of explant type, and physical and chemical factors. Plant Cell Tissue Organ Cult 123:467–478. https://doi.org/10.1007/s11240-015-0850-z
Ministério do meio ambiente MMA (2016) Espécies nativas da flora brasileira de valor econômico atual e potencial: plantas para o futuro-Região Centro-Oeste. Brasília-DF. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1073295/especies-nativas-da-flora-brasileira-de-valor-economico-atual-ou-potencial-plantas-para-o-futuro-regiao-centro-oeste. Accessed 12 Feb 2018
Moyo M, Jeffrey FF, Staden JV (2009) In vitro morphogenesis of organogenic nodules derived from Sclerocarya birrea subsp. caffra leaf explants. Plant Cell Tissue Organ Cult 98:273–280. https://doi.org/10.1007/s11240-009-9559-1
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104. https://doi.org/10.1126/science.1132514
Neri-Numa IA, Pessoa MG, Paulino BN, Pastore GM (2017) Review: Genipin: a natural blue pigment for food and health purposes. Trends Food Sci Technol 67:271–279. https://doi.org/10.1016/j.tifs.2017.06.018
Olatunji D, Geelen D, Verstraeten I (2017) Review: Control of endogenous auxin levels in plant root development. Int J Mol Sci 18:1–29. https://doi.org/10.3390/ijms18122587
Perez-Jimenez M, Cantero-Navarro E, Perez-Alfocea F, Cos-Terrer J (2014) Endogenous hormones response to cytokinins with regard to organogenesis in explants of peach (Prunuspersica L. Batsch) cultivars and rootstocks (P. pérsica x Prunus dulcis). Plant Physiol Biochem 84:197–202. https://doi.org/10.1016/j.plaphy.2014.09.014
Prudente DO, Paiva R, Carpentier S, Swennen R, Nery FC, Silva LC, Panis B (2017) Characterization of the formation of somatic embryos from mature zygotic embryos of Passiflora ligularis Juss. Plant Cell Tissue Organ Cult 131:97–105. https://doi.org/10.1007/s11240-017-1266-8
Rocha MAC, Costa MAPC, Silva AS, Ledo CAS, Moreira MJS, Bastos LP (2008) Enraizamento in vitro a aclimatização de genótipos de jenipapeiro (Genipa americana L.). Rev Bras Frutic 30:769–774. https://doi.org/10.1590/S0100-29452008000300035
Rocha DI, Vieira LM, Tanaka FAO, Silva LC, Otoni WC (2012) Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims). Plant Cell Tissue Organ Cult 111:69–78. https://doi.org/10.1007/s11240-012-0171-4
Sá FP, Ledo AS, Amorim JAE, Silva AVC, Pasqual M (2016) In vitro propagation and acclimatization of genipapo accessions. Ciênc Agrotecnol 40:155–163. https://doi.org/10.1590/1413-70542016402036015
Sahai A, Shahzad A, Sharma S (2010) Histology of organogenesis and somatic embryogenesis in excised root cultures of an endangered species Tylophora indica (Asclepiadaceae). Aust J Bot 58:198–205. https://doi.org/10.1071/BT09220
Santana KB, Almeida AF, Souza VL, Mangabeira PAO, Silva DC, Gomes FP, Dutruch L, Loguercio LL (2012) Physiological analyses of Genipa americana L. reveals a tree with ability as phytostabilizer and rhizofilterer of chromium ions for phytoremediation of polluted watersheds. Environ Exp Bot 80:35–42. https://doi.org/10.1016/j.envexpbot.2012.02.004
Santhoshkumar J, Rajeshkumar S, Kumar SV (2017) Phyto-assisted synthesis, characterization and applications of gold nanoparticles: a review. Biochem Biophys Rep 11:46–57. https://doi.org/10.1016/j.bbrep.2017.06.004
Silva DPC, Paiva R, Herrera RC, Silva LC, Ferreira GN, Reis MV (2018) Somatic embryogenesis of Byrsonima intermedia A. Juss.: induction and maturation via indirect approach. Plant Cell Tissue Organ Cult 133:115–122. https://doi.org/10.1007/s11240-017-1366-5
Simão MJ, Fonseca E, Mansur E, Pacheco G (2016) Effects of auxins and different culture systems on the adventitious root development of Passiflora pohlii Mast. and their ability to produce antioxidant compounds. Plant Cell Tissue Organ Cult 124:419–430. https://doi.org/10.1007/s11240-015-0904-2
Souza RR, Paiva PDO, Silva RR, Reis MV, Nery FC, Paiva R (2016) Optimizating of the in vitro jenipapo seeds germination process. Ciênc Agrotecnol 40:155–163. https://doi.org/10.1590/1413-70542016406014816
Vasconcelos AL, Santos AV, Padilha RJR, Alves LC, Randau KP (2017) Anatomical characterization of ultra-structures, biominerals and histolocalization of metabolites in leaves of Genipa americana. Rev Bras Farmacogn 27:541–548. https://doi.org/10.1016/j.bjp.2017.05.002
Yee TF, Goh CI, Rao AN (2010) In vitro studies on Genipa americana. J Trop Med Plants 11:71–88
Acknowledgements
The authors are thankful to the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES) and Foundation for Supporting Research of the State of Minas Gerais (FAPEMIG) for granting scholarships.
Author information
Authors and Affiliations
Contributions
RRdS, PDdOP and RP conceived and designed the experiment. RRdS, RRdS, MVdR and DPCdS performed the experiments, and analyzed and interpreted the data. RRdS and PDdOP wrote the manuscript. All authors, read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Bart Panis.
Rights and permissions
About this article
Cite this article
de Souza, R.R., de Oliveira Paiva, P.D., da Silva, R.R. et al. Morphogenetic potential of different sources of explants for efficient in vitro regeneration of Genipa sp.. Plant Cell Tiss Organ Cult 136, 153–160 (2019). https://doi.org/10.1007/s11240-018-1501-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11240-018-1501-y