Skip to main content
Log in

Structural and ultrastructural differences between field, micropropagated and acclimated leaves and stems of two Leucospermum cultivars (Proteaceae)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The anatomy of field, in vitro and acclimatized shoots (leaves and stems) of two cultivars of Leucospermum (L. cordifolium ‘Flame Spike’ and L. ‘Tango’) was compared using light, scanning and transmission electron microscopy. Field plants showed several scleromorphic anatomical structures related to excess solar radiation such as: cuticle thickness, subepidermal collenchyma and sclerenchyma. Furthermore, a large quantity of phenolic deposits present in the cell lumen of various tissues is also a scleromorphic feature. The special conditions during in vitro culture result in plantlets with abnormal morphology and anatomy. These disorders are associated with the gaseous environment in the culture vessels, low irradiance in the incubation chamber and the addition of sucrose, nutrients and growth regulators to the culture medium. After transfer from in vitro to ex vitro conditions, substantial changes in leaf and stem anatomy were observed, above all in cuticle thickness, epidermal characteristics (stomatal and trichome index, and stomatal and pore size), differentiation of leaf mesophyll, chloroplast structure, and amount and localization of phenolic deposits. These changes allowed the plants to adapt to the new environmental conditions. The study of anatomical features of in vitro shoots facilitated adapting the acclimation protocol to predict which plantlet would survive the critical acclimation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apóstolo N, Brutti C, Llorente B (2005) Leaf anatomy of Cynara scolymus L. in successive micropropagation stages. In vitro Cell Dev Biol 41:307–313

    Article  Google Scholar 

  • Ben-Jaacov J, Jacobs G (1986) Establishing Protea, Leucospermum and Serruria in vitro. Acta Hortic 185:39–52

    Article  Google Scholar 

  • Bergmann DC (2004) Integrating signals in stomatal development. Curr Opin Plant Biol 7:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bisbis B, Kevers C, Crevecoeur M, Dommes J, Gaspar T (2003) Restart of lignification in micropropagated walnut shoots coincides with rooting induction. Biol Plant 47(1):1–5

    Article  CAS  Google Scholar 

  • Carpenter BJ, Hill RS, Jordan RS (2005) Leaf cuticular morphology links Platanaceae and Proteaceae. Int J Plant Sci 166(5):843–855

    Article  Google Scholar 

  • Conner LN, Conner AJ (1984) Comparative water loss from leaves of Solanum laciniatum plants cultured in vitro and in vivo. Plant Sci Lett 36:241–246

    Article  Google Scholar 

  • Dias Ferreira C, Dias JD, Canhot JM (2003) In vitro propagation of Leucadendron laureolum x L. salignum cv. Safari Sunset: ultrastructural and anatomical studies of regenerated plantlets. Acta Hortic 602:29–38

    Article  Google Scholar 

  • Dickinson WC (2000) Integrative plant anatomy. Academic Press, New York

    Google Scholar 

  • Ďurkovič J, Mišalová A (2009) Wood formation during ex vitro acclimatisation in micropropagated true service tree (Sorbus domestica L.). Plant Cell Tissue Organ Cult 96:343–348

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Gan Y, Zhou L, Shen ZJ, Shen ZX, Zhang YQ, Wang GX (2010) Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Bot Stud 51:325–336

    Google Scholar 

  • George EF, Hall MA, De Klerk G (2008) Plant propagation by tissue culture, 3rd edn. Exegetics, Basingstoke

    Google Scholar 

  • Hatzilazarou SP, Syros TD, Yupsanis TA, Bosabalidis A, Economou AS (2006) Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J Plant Physiol 163:827–836

    Article  CAS  PubMed  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Jacobs G, Steenkamp JC (1976) Rooting stem cuttings of Leucospermum cordifolium and some of its hybrids under mist. Farming in South Africa, series: flowers, ornamental shrubs and trees, B.7. Department Agricultural Technical Services, Pretoria

  • Jausoro V, Llorente BE, Apóstolo NM (2010) Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart. ex DC) Mattos (Bignoniaceae). Plant Cell Tissue Organ Cult 101:183–191

    Article  CAS  Google Scholar 

  • Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 11–125

    Chapter  Google Scholar 

  • Johansen DA (1940) Plant microtechniques. Mc Graw-Hill Book Co. Inc., New York

    Google Scholar 

  • Jordaan A, Theunissen JD (1992) Phenolic deposits and tannin in the leaves of five xerophytic species from southern Africa. Bot Bull Acad Sin 33:55–61

    CAS  Google Scholar 

  • Jordan GJ, Dillon RA, Weston PH (2005) Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Am J Bot 92(5):789–796

    Article  PubMed  Google Scholar 

  • Kunisaki JT (1989) In vitro propagation of Leucospermum hybrid, ‘Hawaii Gold’. HortScience 24(4):686–687

    Google Scholar 

  • Kunisaki JT (1990) Micropropagation of Leucospermum. Acta Hortic 264:45–48

    Article  Google Scholar 

  • Ladygin VG, Semenova GA (1993) The influence of iron deficiency on the composition of chlorophyll-protein complexes and the ultrastructure of pea chloroplasts. Russ J Plant Physiol 40:723–731

    Google Scholar 

  • Ladygin VG, Bondarev NI, Semenova GA, Smolov AA, Reshetnyak OV, Nosov AM (2008) Chloroplast ultrastructure, photosynthetic apparatus activities and production of steviol glycosides in Stevia rebaudiana in vivo and in vitro. Biol Plant 52(1):9–16

    Article  CAS  Google Scholar 

  • León F, Alfayate C, Vera Batista C, López A (2014) Phenolic compounds, antioxidant activity and ultrastructural study from Protea hybrid ‘Susara’. Ind Crop Prod 55:230–237

    Article  CAS  Google Scholar 

  • Louro RP, Santiago LJM, dos Santos AV, Machado RD (2003) Ultrastructure of Eucalyptus grandis x E. urophylla plants cultivated ex vitro in greenhouse and field conditions. Trees 17:11–22

    Article  Google Scholar 

  • Lucchesini M, Monteforti G, Mensuali-Sodi A, Serra G (2006) Leaf ultrastructure, photosynthetis rate and growth of myrtle plantlets under different in vitro culture conditions. Biol Plant 50(2):161–168

    Article  Google Scholar 

  • Majada JP, Sierra MI, Sánchez-Tamés R (2001) Air exchange rate affects the in vitro developed leaf cuticle of carnation. Sci Hortic 87:121–130

    Article  Google Scholar 

  • Majada JP, Fal MA, Tadeo F, Sánchez-Tamés R (2002) Effects of natural ventilation of leaf ultrastructure of Dianthus caryophyllus L. cultured in vitro. In Vitro Cell Dev Biol-Plant 38:272–278

    Article  Google Scholar 

  • Matthews LJ (2002) The protea book. A guide to cultivated Proteaceae. Canterbury University Press, New Zealand

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Oliveira M, Leandro MJ, Figueiredo E (2012) Factors affecting the success of the rooting process in some Proteaceae. Acta Hortic 937:817–824

    Article  Google Scholar 

  • Pérez-Francés JF, Raya-Tamayo V, Rodríguez-Pérez JA (2001) Micropropagation of Leucospermum ‘Sunrise’ (Proteaceae). Acta Hortic 545:161–165

    Article  Google Scholar 

  • Pospíšilová J, Tichá I, Kadleček P, Haisel D, Plzáková Š (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42(4):481–497

    Article  Google Scholar 

  • Rodríguez-Pérez JA, Vera Batista MC, de León Hernández AM, Rodríguez Hernández I (2009) Vegetative cutting propagation of Protea Hybrid ‘Susara’. Eur J Hortic Sci 74(4):175–179

    Google Scholar 

  • Rodríguez-Pérez JA, Vera Batista MC, de León Hernández AM, Rodríguez Hernández I (2011) Use of proleptic shoots in the cutting propagation of Protea ‘Susara’ (Proteaceae). Span J Agric Res 9(2):565–569

    Article  Google Scholar 

  • Rodríguez-Pérez JA, Vera Batista MC, de León Hernández AM, Rodríguez Hernández I, Rodríguez Hernández H (2014) The effect of cutting position, wounding and IBA on the rooting of Leucospermum ‘Spider’. Acta Hortic 1031:77–81

    Article  Google Scholar 

  • Rourke JP (1972) Taxonomic studies of Leucospermum R. Br S Afr J Bot 8:194

    Google Scholar 

  • Rugge BA, Jacobbs G, Theron KI (1989) Factors affecting bud sprouting in multinodal stem segments of Leucospermum cv. Red Sunset in vitro. J Hortic Sci 65(1):55–58

    Article  Google Scholar 

  • Salatino A, Monteiro WR, Bomtempi N (1988) Histochemical localization of phenolic deposits in shoot apices of common species of Asteraceae. Ann Bot 61(5):557–559

    Article  Google Scholar 

  • Salisbury EJ (1929) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans R Soc Lond B 216:1–65

    Article  Google Scholar 

  • Serna L, Fenoll C (1997) Tracing the ontogeny of stomatal clusters in Arabidopsis with molecular markers. Plant J 12(4):747–755

    Article  CAS  PubMed  Google Scholar 

  • Serna L, Fenoll C (2000) Stomatal development in Arabidopsis: how to make a functional pattern. Trends Plant Sci 5:458–460

    Article  CAS  PubMed  Google Scholar 

  • Serna L, Fenoll C (2002) Reinforcing the idea of signalling in the stomatal pathway. Trends Genet 18:597–600

    Article  CAS  PubMed  Google Scholar 

  • Serret MD, Trillas MI (2000) Effects of light and sucrose levels on the anatomy, ultrastructure, and photosynthesis of Gardenia jasminoides Ellis leaflets cultured in vitro. Int J Plant Sci 161(2):281–289

    Article  CAS  PubMed  Google Scholar 

  • Skelton PR, Midgley JJ, Nyaga JM, Johnson SD, Cramer MD (2012) Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Aust J Bot 60:104–113

    Article  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26(1):31–43

    Article  CAS  PubMed  Google Scholar 

  • Stefanova M, Koleva D, Ganeva T (2013) Effect of plant growth regulators on chloroplast ultrastructure in Lamium album plantlets. Bul J Agri Sci 19(6):1208–1212

    Google Scholar 

  • Stoyanova-Koleva D, Stefanova M, Zhiponova M, Kapchina-Toteva V (2012) Effect of N6-benzyladenine and índole-3-butyric acid on photosynthetic apparatus of Orthosiphon stamineus plants grown in vitro. Biol Plant 56(4):607–612

    Article  CAS  Google Scholar 

  • Suárez E, Pérez-Francés JF, Rodríguez-Pérez JA (2010) Use of multinodal explants for micropropagation of Leucadendron ‘Safari Sunset’. Span J Agric Res 8(3):790–796

    Article  Google Scholar 

  • Suárez E, Alfayate C, Pérez-Francés JF, Rodríguez-Pérez JA (2018) Structural and ultrastructural variations in in vitro and ex vitro rooting of microcuttings from two micropropagated Leucospermum (Proteaceae). Sci Hortic 239:300–307

    Article  CAS  Google Scholar 

  • Sutter E (1984) Chemical composition of epicuticular wax in cabbage plants grown in vitro. Can J Bot 62(1):74–77

    Article  CAS  Google Scholar 

  • Tal E, Ben-Jaacov J, Watad AA (1992) Hardering and in vivo establishment of micropropagated Grevillea and Leucospermum. Acta Hortic 316:63–67

    Article  Google Scholar 

  • Tang M, Hu YX, Lin JX (2002) Developmental mechanism and distribution pattern of stomatal clusters in Begonia eltatifolia. Acta Bot Sin 44:24–33

    Google Scholar 

  • Theunissen JD, Jordaan A (1990) Histochemical localization of phenolic deposits in leaf blades of Eragrostis racemose. Ann Bot 65(2):633–636

    Article  CAS  Google Scholar 

  • Thillerot M, Choix F, Poupet A, Montarone M (2006) Micropropagation of Leucospermum ‘High Gold’ and three cultivars of Protea. Acta Hortic 716:17–24

    Article  Google Scholar 

  • van Staden J, Bornman CH (1976) Initiation and growth of Leucospermum cordifolium callus. J S Afr Bot 42(1):17–23

    Google Scholar 

  • Vera Batista MC (2016) Contribución al conocimiento de la propagación por estacas de algunas especies y cultivares de proteas. Thesis. Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife

  • Zhao X, Yang Y, Shen Z, Zhang H, Wang G, Gan Y (2006a) Stomatal clustering in Cinnamomum camphora. S Afr J Bot 72:565–569

    Article  Google Scholar 

  • Zhao Y, Zhou Y, Grout BWW (2006b) Variation in leaf structure of micropropagated rhubarb (Rheum rhaponticum L.) PC49. Plant Cell Tissue Organ Cult 85:115–121

    Article  Google Scholar 

  • Zobayed SMA, Armstrong J, Armstrong W (2001) Leaf anatomy of in vitro tobacco and cauliflower plantlets as affected by different types of ventilation. Plant Sci 161:537–548

    Article  CAS  Google Scholar 

  • Zucker WV (1983) Tannins: does structure determine function? An ecological perspective. Am Nat 12:335–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ES and CA planned and designed the research, JAR-P contributed plant material, ES performed the experiments and collected data. ES, CA, JFP-F and JAR-P analysed the data, ES wrote the manuscript and CA supervised the writing. All the co-authors reviewed the manuscript before submission.

Corresponding author

Correspondence to Emma Suárez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. I. Beruto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, E., Alfayate, C., Pérez-Francés, J.F. et al. Structural and ultrastructural differences between field, micropropagated and acclimated leaves and stems of two Leucospermum cultivars (Proteaceae). Plant Cell Tiss Organ Cult 136, 15–27 (2019). https://doi.org/10.1007/s11240-018-1487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1487-5

Keywords

Navigation