Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 135, Issue 1, pp 133–141 | Cite as

Application of the CRISPR/Cas9 system in Dioscorea zingiberensis

  • Shan Feng
  • Wei Song
  • Ruirui Fu
  • Hong Zhang
  • Anran Xu
  • Jiaru Li
Original Article
  • 255 Downloads

Abstract

Dioscorea zingiberensis is a major pharmaceutical plant that produces diosgenin, an important starting material for steroidal hormones. To date, no genome editing approach in D. zingiberensis has been reported. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system has proven to be an efficient targeted genome modification tool and has been successfully applied in many plants, including rice, soybean, wheat, and Arabidopsis. Here, we report CRISPR/Cas9-mediated targeted mutagenesis in D. zingiberensis using an Agrobacterium tumefaciens-mediated transformation method. The target guide RNA was designed in the first exon of the farnesyl pyrophosphate synthase gene (Dzfps), which is a critical gene involved in the synthesis of secondary metabolites. The single guide RNA expression cassette was driven by the OsU3 promoter, and Cas9 was driven by the 35S promoter. High frequencies of mutants were detected in T0 plants. Among 15 transformed plants, nine mutants that contained five types of mutations at the predicted double-stranded break site were identified. The transcript levels of Dzfps and the content of squalene in isolated mutants were significantly decreased compared with those in wild-type plants. Overall, our research provides a rapid and efficient approach for targeted genome modification in D. zingiberensis.

Keywords

Dioscorea zingiberensis CRISPR/Cas9 system Targeted genome editing Farnesyl pyrophosphate synthase gene 

Abbreviations

CRISPR/Cas9

The clustered regularly interspaced short palindromic repeats

Dzfps

Farnesyl pyrophosphate synthase gene

sgRNA

Single guide RNA

DSBs

Double-strand breaks

NHEJ

Non-homologous end joining

HDR

Homology-directed repair

FPS

Farnesyl pyrophosphate synthase

HygR

Hygromycin resistance gene

AS

Acetosyringone

qRT-PCR

Real-time reverse transcriptase-polymerase chain reaction

PTCs

Premature termination codons

PAM

Protospacer adjacent motif

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 31270345).

Supplementary material

11240_2018_1450_MOESM1_ESM.tif (9.3 mb)
Fig. S1 Generation of transgenic plants. (a) Callus induced from the stems of D. zingiberensis. (b) Generation of hygromycin-resistant callus. (c) Shoot elongation and root induction. (d) Acclimatisation of a transformed shoot. (TIF 9490 KB)
11240_2018_1450_MOESM2_ESM.tif (4.1 mb)
Fig. S2 PCR analysis of the HygR gene in transgenic lines. M, DNA marker; 1, Positive control; 2–7, Different transgenic lines; 8, Wild-type plant. Red arrowheads indicate the PCR product of the HygR gene, ~400 bp. (TIF 4247 KB)
11240_2018_1450_MOESM3_ESM.tif (1.4 mb)
Fig. S3 New mutation type in shoots generated from mutant #5 by rhizome breeding. (a) Sequences of wild-type and mutation induced at the target site; blue capital letters, protospacer adjacent motif; red capital letters, target sequence; dashes, deletions. (b) Sequence peaks of the wild type and mutation type at the target site. Red arrowheads indicate the locations of the mutations. #5-1 indicate the mutant generated from mutant #5. (TIF 1401 KB)
11240_2018_1450_MOESM4_ESM.docx (15 kb)
Table S1 (DOCX 15 KB)
11240_2018_1450_MOESM5_ESM.docx (14 kb)
Text S1 Full-length Dzfps (DOCX 14 KB)
11240_2018_1450_MOESM6_ESM.docx (17 kb)
Text S2 Premature termination codons (PTCs) and protein sequences generated by frameshift mutations of Dzfps. CDS, coding sequence; blue capital letters, target sequence; red capital letters, protospacer adjacent motif; dashes, deletions; yellow rectangle, termination codon. (DOCX 17 KB)

References

  1. Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185CrossRefPubMedGoogle Scholar
  2. Chen Y, Fan J, Yi F, Luo Z, Fu Y (2003) Rapid clonal propagation of Dioscorea zingiberensis. Plant Cell Tissue Organ Cult 73:75–80CrossRefGoogle Scholar
  3. Chen Y, Xu X, Zhang Y, Liu K, Huang F, Liu B, Kou J (2016) Diosgenin regulates adipokine expression in perivascular adipose tissue and ameliorates endothelial dysfunction via regulation of AMPK. J Steroid Biochem Mol Biol 155:155–165CrossRefPubMedGoogle Scholar
  4. Closa M, Vranova E, Bortolotti C, Bigler L, Arro M, Ferrer A, Gruissem W (2010) The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant J 63:512–525CrossRefPubMedGoogle Scholar
  5. Conti E, Izaurralde E (2005) Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol 17:316–325CrossRefPubMedGoogle Scholar
  6. Dhar MK, Koul A, Kaul S (2013) Farnesyl pyrophosphate synthase: a key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. New Biotechnol 30:114–123CrossRefGoogle Scholar
  7. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gong G, Qin Y, Huang W (2011) Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine 18:458–463CrossRefPubMedGoogle Scholar
  9. Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4:263–269CrossRefPubMedGoogle Scholar
  10. He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, Sun J (2014) Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine 21:871–876CrossRefPubMedGoogle Scholar
  11. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9:e99225CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L (2016) Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine 23:243–252CrossRefPubMedGoogle Scholar
  15. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Ann N Y Acad Sci 337:816–821CrossRefGoogle Scholar
  16. Johnson RA, Gurevich V, Filler S, Samach A, Levy AA (2015) Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol 87:143–156CrossRefPubMedGoogle Scholar
  17. Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1:570–578CrossRefPubMedGoogle Scholar
  18. Kim CS, Koh HS, Fukami H (1994) Antifeedants of rice planthoppers in some millets. Appl Entomol Zool 29:71–79CrossRefGoogle Scholar
  19. Kim OT, Kim SH, Ohyama K, Muranaka T, Choi YE, Lee HY, Kim MY, Hwang B (2010) Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase. Plant Cell Rep 29:403–411CrossRefPubMedGoogle Scholar
  20. Kui L, Chen H, Zhang W, He S, Xiong Z, Zhang Y, Yan L, Zhong C, He F, Chen J, Zeng P, Zhang G, Yang S, Dong Y, Wang W, Cai J (2016) Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front Plant Sci 7:2036PubMedGoogle Scholar
  21. Li W, Teng F, Li T, Zhou Q (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31:684–686CrossRefPubMedGoogle Scholar
  22. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532CrossRefPubMedGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆C T method. Method 25:402–408CrossRefGoogle Scholar
  24. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284CrossRefPubMedGoogle Scholar
  25. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011CrossRefPubMedPubMedCentralGoogle Scholar
  26. Maquat LE (2005) Nonsense-mediated mRNA decay in mammals. J Cell Sci 118:1773–1776CrossRefPubMedGoogle Scholar
  27. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791–800CrossRefPubMedGoogle Scholar
  30. Shi L, Fan JQ, Hu CG, Luo J, Yao JL (2012) Improved production of transgenic Dioscorea zingiberensis (Dioscoreaceae) by Agrobacterium tumefaciens-mediated transformation. Genet Mol Res 11:244–253CrossRefPubMedGoogle Scholar
  31. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216CrossRefPubMedGoogle Scholar
  32. Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L (2017) CRISPR/Cas9 targeting events bring about complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shu Y, Ying-Cai Y, Hong-Hui L (2005) Plant regeneration through somatic embryogenesis from callus cultures of Dioscorea zingiberensis. Plant Cell Tissue Organ Cult 80:157–161CrossRefGoogle Scholar
  34. Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS (2007) Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci Biotechnol Biochem 71:3063–3071CrossRefPubMedGoogle Scholar
  35. Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Organ Cult 129:153–160CrossRefGoogle Scholar
  36. Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tewtrakul S, Itharat A (2006) Anti-allergic substances from the rhizomes of Dioscorea membranacea. Bioorg Med Chem 14:8707–8711CrossRefPubMedGoogle Scholar
  38. Thulasiram HV, Poulter CD (2006) Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity. J Am Chem Soc 128:15819–15823CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 2:947–951CrossRefGoogle Scholar
  40. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476CrossRefPubMedGoogle Scholar
  41. Wang JL, Tang MQ, Chen S, Zheng XF, Mo HX, Li SJ, Wang Z, Zhu KM, Ding LN, Liu SY, Li YH, Tan XL (2017) Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol J 15:1024–1033CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983CrossRefPubMedGoogle Scholar
  43. Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ye Y, Wang R, Jin L, Shen J, Li X, Yang T, Zhou M, Yang Z, Chen Y (2014) Molecular cloning and differential expression analysis of a squalene synthase gene from Dioscorea zingiberensis, an important pharmaceutical plant. Mol Biol Rep 41:6097–6104CrossRefPubMedGoogle Scholar
  45. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014a) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807CrossRefPubMedGoogle Scholar
  46. Zhang Z, Song C, Fu X, Liu M, Li Y, Pan J, Liu H, Wang S, Xiang L, Xiao GG, Ju D (2014b) High-dose diosgenin reduces bone loss in ovariectomized rats via attenuation of the RANKL/OPG ratio. Int J Mol Sci 15:17130–17147CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang Y, Li ZX, Yu XD, Fan J, Pickett JA, Jones HD, Zhou JJ, Birkett MA, Caulfield J, Napier JA, Zhao GY, Cheng XG, Shi Y, Bruce TJ, Xia LQ (2015) Molecular characterization of two isoforms of a farnesyl pyrophosphate synthase gene in wheat and their roles in sesquiterpene synthesis and inducible defence against aphid infestation. New Phytol 206:1101–1115CrossRefPubMedGoogle Scholar
  48. Zhao S, Niu F, Xu CY, Liu Y, Ye L, Bi GB, Chen L, Tian G, Nie TH (2016) Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci 185:581–587CrossRefPubMedGoogle Scholar
  49. Zhu Q, Wu F, Ding F, Ye D, Chen Y, Li Y, Zhifan Y (2009) Agrobacterium-mediated transformation of Dioscorea zingiberensis Wright, an important pharmaceutical crop. Plant Cell Tissue Organ Cult 96:317–324CrossRefGoogle Scholar
  50. Zhu Y, Huang W, Ni J (2010) A promising clean process for production of diosgenin from Dioscorea zingiberensis C. H. Wright. J Clean Prod 18:242–247CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations