Skip to main content
Log in

24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’ apple flesh

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Color is a key factor for fruit commercial value. 5-Aminolevulinic acid (5-ALA), as an eco-friendly plant growth regulator, shows an attractively promotive effect on plant secondary metabolism, especially for fruit coloration. Brassinosteroids (BRs) can also improve plant flavonoid biosynthesis. No information is now available on the relationship between 5-ALA and BR. Here, we found that 1.5 mg L−1 24-epibrassinolide (24-EBL) promoted 50 mg L−1 5-ALA-induced anthocyanin accumulation, while, brassinazole (Brz) significantly inhibited the 5-ALA-induced flavonoid accumulation. HPLC analysis further showed that the inductive effects of 5-ALA on the accumulation of cyanidin-3-galactoside, quercetin-3-galactoside, quercetin and kaempferol were elevated by 24-EBL, but impaired by Brz. These results suggest that brassinolide biosynthesis might involve in 5-ALA-induced flavonoid accumulation. Gene expression analysis showed that 5-ALA and 5-ALA + 24-EBL induced the expression of regulatory genes MdMYB10, MdMYB9, MdbHLH3 and MdbHLH33. These two treatments also up-regulated the structural gene expressions of anthocyanin biosynthesis and transportation, including MdCHS, MdF3′H, MdDFR, MdANS, MdUFGT, MdGST and MdMATE, as well as flavonol biosynthetic gene MdFLS. But Brz decreased 5-ALA-induced up-regulation of these genes. In addition, 5-ALA also induced the expression of MdBRI1, MdBAK1 and MdBZR1, which are involved in brassinolide signal transduction. These results indicate that 24-EBL enhances 5-ALA-promoted expression of genes related to flavonoid biosynthesis and brassinolide signal transduction, while Brz exhibits the opposite effects. Taken together, we propose that 24-EBL is involved in 5-ALA-induced anthocyanin and flavonol accumulation in calli of apples. Our results provide new insights into 5-ALA-induced fruit coloration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    Article  CAS  Google Scholar 

  • Albert NW, Lewis DH, Zhang HB, Irving LJ, Jameson PE, Davies KM (2009) Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot 7(60):2191–2202

    Article  CAS  Google Scholar 

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169:710–717

    Article  PubMed  CAS  Google Scholar 

  • An XH, Tian Y, Chen KQ, Liu XJ, Liu DD, Xie XB, Cheng CG, Cong PH, Hao YJ (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol 56:650–662

    Article  PubMed  CAS  Google Scholar 

  • An YY, Feng XX, Liu LB, Xiong LJ, Wang LJ (2016a) ALA-induced flavonols accumulation in guard cells is involved in scavenging H2O2 and inhibiting stomatal closure in Arabidopsis cotyledons. Front Plant Sci 7(1713):1–12

    Google Scholar 

  • An YY, Liu LB, Chen LH, Wang LJ (2016b) ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells. Front Plant Sci 7:482

    PubMed  PubMed Central  Google Scholar 

  • Asghari M, Zahedipour P (2016) 24-Epibrassinolide acts as a growth-promoting and resistance-mediating factor in strawberry plants. J Plant Growth Regul 35(3):1–8

    Article  CAS  Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236(4):1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann Rev Plant Physiol 29:95–120

    Article  CAS  Google Scholar 

  • Bindu RC, Vivekanandan M (1998) Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul 26:15–18

    Article  CAS  Google Scholar 

  • Burda S, Oleszek W, Lee CY (1990) Phenolic compounds and their changes in apples during maturation and cold storage. J Agric Food Chem 38(4):945–948

    Article  CAS  Google Scholar 

  • Chagné D, Carlile CM, Blond C, Volz R, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dobrikova AG, Vladkova RS, Rashkov GD, Todinova SJ, Krumova SB, Apostolova EL (2014) Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions. Plant Physiol Biochem 80:75–82

    Article  PubMed  CAS  Google Scholar 

  • El-sharkawy I, Dong L, Xu KN (2015) Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66(22):7359–7376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng S, Li MF, Wu F, Li WL, Li SP (2015) 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China. Sci Hortic 193:188–194

    Article  CAS  Google Scholar 

  • Feng XX, An YY, Zheng J, Sun M, Wang LJ (2016) Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1. Front Plant Sci 7(1615):1–19

    CAS  Google Scholar 

  • Feyissa D, Løvdal T, Olsen K, Slimestad R, Lillo C (2009) The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747–754

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R (2011) Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. Plant Biol 13(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Cai ZX, Zhang BB, Xu JA, Song HF, Ma RJ (2013) The mechanism analysis of anthocyanin accumulation in peach accelerated by ALA. Acta Hortic Sin 40:1043–1050

    CAS  Google Scholar 

  • Hoch WA, Singsaas EL, McCown BH (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol 133:1296–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus, L.) leaves. Planta 218(5):721–728

    Article  PubMed  CAS  Google Scholar 

  • Ji XH, Wang YT, Zhang R, Wu SJ, An MM, Li M, Wang CZ, Chen XL, Zhang YM, Chen XS (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii, f. niedzwetzkyana). Plant Cell Tissue Organ Cult 120(1):325–337

    Article  CAS  Google Scholar 

  • Jiang F, Wang JY, Jia HF, Jia WS, Wang H, Xiao M (2013) RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit. J Plant Growth Regul 32(1):182–190

    Article  CAS  Google Scholar 

  • Kurlus R, Lysiak G (2014) Fertilizer containing 5-aminolevulinic acid effect on sour cherry fruit quality and biological characteristics. Acta Hortic 1020:323–329

    Article  Google Scholar 

  • Lancaster JE (1992) Regulation of skin color in apples. Crit Rev Plant Sci 10:487–502

    Article  CAS  Google Scholar 

  • Li XH, Kim YB, Kim YJ, Zhao SC, Kim HH, Chung E, Lee J, Park SU (2013) Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat. J Plant Physiol 170:1630–1636

    Article  PubMed  CAS  Google Scholar 

  • Liu LB, Xiong LJ, An Y, Zheng J, Wang LJ (2017) Flavonols induced by 5-aminolevulinic acid are involved in regulation of stomatal opening in apple leaves. Hortic Plant J 2(6):323–330

    Article  CAS  Google Scholar 

  • Livak KJ, Schmitten TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu YF, Zhang ML, Meng XN, Yao YC (2015) Photoperiod and shading regulate coloration and anthocyanin accumulation in the leaves of malus crabapples. Plant Cell Tissue Organ Cult 121(3):619–632

    Article  CAS  Google Scholar 

  • Mao JP, Zhang D, Li K, Liu Z, Liu XJ, Song CH, Li GF, Zhao CP, Ma JJ, Han MY (2017) Effect of exogenous brassinolide (BR) application on the morphology, hormone status, and gene expression of developing lateral roots in Malus hupehensis. Plant Growth Regul 82(4):1–11

    Google Scholar 

  • Nagata T, Todoriki S, Masumizu T, Suda K, Furuta S, Du Z, Kikuchi S (2003) Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J Agric Food Chem 51(10):2992–2999

    Article  PubMed  CAS  Google Scholar 

  • Peng ZH, Han CY, Yuan LB, Zhang K, Huang HM, Ren CM (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol 53(8):632–640

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna B, Rao SSR (2012) 24-epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus, L.) seedlings by enhancing antioxidative system. Plant Growth Regul 68(2):249–259

    Article  CAS  Google Scholar 

  • Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6(950):1–17

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochem 65(19):2631–2648

    Article  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomes E (2014) Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in, Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229(2):427–445

    Article  PubMed  CAS  Google Scholar 

  • Sun JJ, Wang YC, Chen XS, Gong XJ, Wang N, Ma L, Qiu YF, Wang YL, Feng SQ (2017) Effects of methyl jasmonate and abscisic acid on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii, f. niedzwetzkyana). Plant Cell Tissue Organ Cult 130:227–237

    Article  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  PubMed  CAS  Google Scholar 

  • Takos AM, Jaffé W, Jacob SR, Bogs J, Robinson SP, Walker AR (2006a) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takos AM, Ubi BE, Robinson SP, Walker AR (2006b) Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin. Plant Sci 170(3):487–499

    Article  CAS  Google Scholar 

  • Ubi BE, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 3:571–578

    Article  CAS  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53(377):2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Vu TT, Jeong CY, Nguyen HN, Lee D, Lee SA, Kim JH, Hong SW, Lee H (2015) Characterization of Brassica napus FLAVONOL SYNTHASE (BnFLS) involved in flavonol biosynthesis in Brassica napus L. J Agric Food Chem 63:7819–7829

    Article  PubMed  CAS  Google Scholar 

  • Wang LJ, Wang ZH, Li ZQ, Liu H, Liu WQ, Chen ZY, Yan P, Sun DQ (2004) Effect of 5-aminolevulinic acid on enhancing apple fruit coloration. J Fruit Sci 21:512–515

    Google Scholar 

  • Wang ZH, Tang GH, Li ZQ, Wang LJ (2006) Promotion of 5-aminolevulinic acid and genistein on anthocyan in accumulation in apples. Acta Hortic Sin 33(5):1055–1058

    CAS  Google Scholar 

  • Wang Q, Ding T, Gao L, Pang J, Yang N (2012) Effect of brassinolide on chilling injury of green bell pepper in storage. Sci Hortic 144(144):195–200

    Article  CAS  Google Scholar 

  • Wang LJ, Li JH, Gao JJ, Feng XX, Shi ZX, Gao FY, Xu XL, Yang LY (2014) Inhibitory effect of chlorogenic acid on fruit russeting in ‘Golden Delicious’ apple. Sci Hortic 178(178):14–22

    Article  CAS  Google Scholar 

  • Wang N, Zhang ZY, Jiang SH, Xu HF, Wang YC, Feng SQ, Chen XS (2016) Synergistic effects of light and temperature on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii, f. niedzwetzkyana). Plant Cell Tissue Organ Cult 127:217–227

    Article  CAS  Google Scholar 

  • Watanabe K, Nishihara E, Watanabe S, Tanaka T, Takahashi K, Takeuchi Y (2006) Enhancement of growth and fruit maturity in 2-year-old grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul 49:35–42

    Article  CAS  Google Scholar 

  • Watkins JM, Hechler PJ, Muday GK (2014) Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiol 164:1707–1717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Ma LN, Fang YL (2013) Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem 141(3):3056–3065

    Article  PubMed  CAS  Google Scholar 

  • Xiao CC, Zhang SL, Hu HJ, Tian R, Wu J, Yang ZJ, Ma CY (2012) Effects of bagging and exogenous 5-aminolevulinic acid treatment on coloration of ‘Yunhongli 2’. J Nanjing Agric Univ 35:25–29

    CAS  Google Scholar 

  • Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35(11):1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Wang ZH, Cheng XH, Gao JJ, Zhang ZP, Wang LJ (2013) 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Plant Growth Regul 69:295–303

    Article  CAS  Google Scholar 

  • Xu F, Zhu J, Cheng SY, Zhang WW, Wang Y (2010) Effect of 5-aminolevulinic acid on photosynthesis, yield, nutrition and medicinal values of kudzu (Pueraria phaseoloides). Trop Grassl 44:260–265

    Google Scholar 

  • Xu F, Cheng SY, Zhu J, Zhang WW, Wang Y (2011) Effects of 5-aminolevulinic acid on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba. Not Bot Hortic Agrobot 39:41–47

    Article  Google Scholar 

  • Xu F, Gao X, Xi ZM, Zhang H, Peng XQ, Wang ZZ, Wang TM, Meng Y (2015a) Application of exogenous 24-epibrassinolide enhances proanthocyanidin biosynthesis in Vitis vinifera, ‘Cabernet Sauvignon’ berry skin. Plant Growth Regul 75(3):741–750

    Article  CAS  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015b) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20(3):176–185

    Article  PubMed  CAS  Google Scholar 

  • Yan LM, Ma YY, Liu D, Wei XC, Sun Y, Chen XY, Zhao HD, Zhou JW, Wang ZY, Shui WQ, Luo ZY (2012) Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Res 22(8):1304–1308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye HX, Li L, Yin YH (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Integr Plant Biol 53(6):455–468

    Article  PubMed  CAS  Google Scholar 

  • Ye JB, Yang XH, Chen QW, Xu F, Wang GY (2017) Promotive effects of 5-aminolevulinic acid on fruit quality and coloration of Prunus persica (L.) Batsch. Sci Hortic 217:266–275

    Article  CAS  Google Scholar 

  • Yuan LB, Peng ZH, Zhi TT, Zho Z, Liu Y, Zhu Q, Xiong XY, Ren CM (2015) Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biol Plant 59(1):99–105

    Article  CAS  Google Scholar 

  • Zhang Y, He J, Yang SJ, Chen YY (2014) Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. Biol Plant 58(2):311–318

    Article  CAS  Google Scholar 

  • Zheng J, An YY, Feng XX, Wang LJ (2017) Rhizospheric application with 5-aminolevulinic acid improves coloration and quality in ‘Fuji’ apples. Sci Hortic 224:74–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Jiangsu Province, China (BK20140702), the National Natural Science Foundation of China (31401820), and the Fundamental Research Funds for the Central Universities (KJQN201538).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: JZ and LW. Performed the experiments: JZ. Analyzed the data: JZ and YA. JZ, YA and LW wrote the manuscript.

Corresponding author

Correspondence to Liangju Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., An, Y. & Wang, L. 24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of ‘Fuji’ apple flesh. Plant Cell Tiss Organ Cult 134, 319–330 (2018). https://doi.org/10.1007/s11240-018-1418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1418-5

Keywords

Navigation