Cotton (Gossypium hirsutum) JAZ3 and SLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation

  • Xiao-Cong Xia
  • Qian-Qian Hu
  • Wen Li
  • Yun Chen
  • Li-Hong Han
  • Miao Tao
  • Wen-Ying Wu
  • Xue-Bao Li
  • Geng-Qing Huang
Original Article
  • 153 Downloads

Abstract

Jasmonate ZIM-domain (JAZ) proteins and DELLA proteins are key negative regulators of jasmonates (JAs) and gibberellin (GA) signaling, respectively. In this study, we found JA and GA synergistically promote fiber cell initiation. We characterized the cellular function of a JAZ protein (GhJAZ3), and a DELLA protein (GhSLR1) of cotton (Gossypium hirsutum). GhJAZ3 is specifically expressed in elongating fibers, while GhSLR1 is expressed in different tissues and at a relatively higher level in 3 DPA ovules. GhSLR1 and GhJAZ3 proteins are localized in the cell nucleus. Yeast two-hybrid analysis indicated that GhSLR1, GhJAZ3 and GhDEL65 could interact with each other, and GhSLR1 could also interact with GhBZR1. Overexpression of GhJAZ3 in Arabidopsis increased hypocotyl and root length, leaf trichome length, and plant height, but decreased the number of leaf trichome, while overexpression of GhSLR1 in Arabidopsis decreased hypocotyl length, leaf trichome length and density. Expression of several leaf trichome initiation determinators (GL3, GL2, TTG2 and MYB23) was down-regulated in GhJAZ3 or GhSLR1 transgenic Arabidopsis, while expression of the cell elongation related genes (EXP1, EXP8, EXPL2 and XTH4) was altered in the GhJAZ3 and GhSLR1 transgenic Arabidopsis. Taken together, these results demonstrate that GhJAZ3 and GhSLR1 function in jasmonate and gibberellin mediated epidermal cell differentiation and elongation.

Keywords

GhJAZ3 GhSLR1 Jasmonate Gibberellin Epidermal cell differentiation Cell elongation 

Notes

Acknowledgements

This work was supported by National Natural Sciences Foundation of China (Grant No. 31271317).

Author contributions

GQH, XBL, and XCX designed the experiment, analyzed the data and wrote the manuscript. XCX, and QQH performed most of the experiments. YC, WL, LHH, WYW, and MT performed some of the experiments and assisted in data analysis. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11240_2018_1378_MOESM1_ESM.doc (6.1 mb)
Supplementary material 1 (DOC 6233 KB)

References

  1. Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin, and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817.  https://doi.org/10.1038/ncb2546 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beasley CA, Ting IP (1973) The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot 60:130–139CrossRefGoogle Scholar
  3. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol l60:183–205.  https://doi.org/10.1146/annurev.arplant.043008.092007 CrossRefGoogle Scholar
  4. Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671CrossRefPubMedGoogle Scholar
  5. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484.  https://doi.org/10.1038/nature06520 CrossRefPubMedGoogle Scholar
  6. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479.  https://doi.org/10.1038/nature06448 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134:174–182.  https://doi.org/10.1111/j.1399-3054.2008.01115.x CrossRefPubMedGoogle Scholar
  8. Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199.  https://doi.org/10.1016/j.tplants.2008.02.005 CrossRefPubMedGoogle Scholar
  9. Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894.  https://doi.org/10.1016/j.devcel.2010.10.024 CrossRefPubMedGoogle Scholar
  10. Hou X, Ding L, Yu H (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074.  https://doi.org/10.1007/s00299-013-1423-4 CrossRefPubMedGoogle Scholar
  11. Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, Zhang X (2016) GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J 88:921–935.  https://doi.org/10.1111/tpj.13273 CrossRefPubMedGoogle Scholar
  12. Humphries JA, Walker AR, Timmis JN, Orford SJ (2005) Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol 57:67–81CrossRefPubMedGoogle Scholar
  13. Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531–2543CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386.  https://doi.org/10.1146/annurev.arplant.59.032607.092949 CrossRefPubMedGoogle Scholar
  15. Juturu VN, Mekala GK, Kirti PB (2015) Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tissue Organ Cult 120:813.  https://doi.org/10.1007/s11240-014-0640-z CrossRefGoogle Scholar
  16. Kazan K, Manners JM (2011) The interplay between light and jasmonate signaling during defence and development. J Exp Bot 62:4087–4100.  https://doi.org/10.1093/jxb/err142 CrossRefPubMedGoogle Scholar
  17. Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31.  https://doi.org/10.1016/j.tplants.2011.10.006 CrossRefPubMedGoogle Scholar
  18. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kim HJ, Hinchliffe DJ, Triplett BA, Chen ZJ, Stelly DM, Yeater KM, Moon HS, Gilbert MK, Thyssen GN, Turley RB, Fang DD (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 10:e0125046.  https://doi.org/10.1371/journal.pone.0125046 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee JJ, Woodward AW, Chen Z (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li XB, Cai L, Cheng NH, Liu JW (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674CrossRefPubMedPubMedCentralGoogle Scholar
  22. Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y (2007) GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 51:419–430CrossRefPubMedGoogle Scholar
  23. Ma LF, Li Y, Chen Y, Li XB (2016) Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene. Plant Cell Tissue Organ Cult 124:583–598.  https://doi.org/10.1007/s11240-015-0917-x CrossRefGoogle Scholar
  24. Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5:e1000396.  https://doi.org/10.1371/journal.pgen.1000396 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3:e03031.  https://doi.org/10.7554/eLife.03031 CrossRefPubMedCentralGoogle Scholar
  26. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100.  https://doi.org/10.1105/tpc.111.089300 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814.  https://doi.org/10.1105/tpc.111.083261 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–1133.  https://doi.org/10.1105/tpc.113.121731 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Qin LX, Rao Y, Li L, Huang JF, Xu WL, Li XB (2013) Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 8:e59115.  https://doi.org/10.1371/journal.pone.0059115 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Shan CM, Shangguan XX, Zhao B, Zhang XF, Chao LM, Yang CQ, Wang LJ, Zhu HY, Zeng YD, Guo WZ, Zhou BL, Hu GJ, Guan XY, Chen ZJ, Wendel JF, Zhang TZ, Chen XY (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519.  https://doi.org/10.1038/ncomms6519 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Shangguan XX, Yang CQ, Zhang XF, Wang LJ (2016) Functional characterization of a basic Helix-Loop-Helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant 158:200–212.  https://doi.org/10.1111/ppl.12450 CrossRefPubMedGoogle Scholar
  32. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role forethylene in cotton fiber cell elongation. Plant Cell 18:651–664CrossRefPubMedPubMedCentralGoogle Scholar
  33. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB2 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013.  https://doi.org/10.1105/tpc.111.083089 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Song S, Qi T, Wasternack C, Xie D (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21:112–119.  https://doi.org/10.1016/j.pbi.2014.07.005 CrossRefPubMedGoogle Scholar
  35. Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345.  https://doi.org/10.1016/j.cub.2011.02.036 CrossRefPubMedGoogle Scholar
  36. Tan JF, Tu LL, Deng FL, Wu R, Zhang XL (2012) Exogenous Jasmonic acid inhibits cotton fiber elongation. J Plant Growth Regul 31:599–605.  https://doi.org/10.1007/s00344-012-9260-1 CrossRefGoogle Scholar
  37. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665CrossRefPubMedGoogle Scholar
  38. Thireault C, Shyu C, Yoshida Y, St Aubin B, Campos ML, Howe GA (2015) Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–679.  https://doi.org/10.1111/tpj.12841 CrossRefPubMedGoogle Scholar
  39. Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198CrossRefPubMedGoogle Scholar
  40. Walford SA, Wu Y, Llewellyn DJ, Dennis ES (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 71:464–478.  https://doi.org/10.1111/j.1365-313X.2012.05003.x PubMedGoogle Scholar
  41. Wang XL, Li XB (2009) The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton. Plant J 57:473–486.  https://doi.org/10.1111/j.1365-313X.2008.03700.x CrossRefPubMedGoogle Scholar
  42. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang MY, Zhao PM, Cheng HQ, Han LB, Wu XM, Gao P, Wang HY, Yang CL, Zhong NQ, Zuo JR, Xia GX (2013) The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiol 162:1669–1680.  https://doi.org/10.1104/pp.113.215673 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang NN, Zhao LL, Lu R, Li Y, Li XB (2015a) Cotton mitogen-activated protein kinase4 (GhMPK4) confers the transgenic Arabidopsis hypersensitivity to salt and osmotic stresses. Plant Cell Tissue Organ Cult 123:619–632.  https://doi.org/10.1007/s11240-015-0865-5 CrossRefGoogle Scholar
  45. Wang L, Zhu Y, Hu W, Zhang X, Cai C, Guo W (2015b) Comparative transcriptomics reveals jasmonic acid-associated metabolism related to cotton fiber initiation. PLoS ONE 10:e0129854.  https://doi.org/10.1371/journal.pone.0129854 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058.  https://doi.org/10.1093/aob/mct067 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xiao YH, Li DM, Yin MH, Li XB, Zhang M, Wang YJ, Dong J, Zhao J, Luo M, Luo XY, Hou L, Hu L, Pei Y (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837.  https://doi.org/10.1016/j.jplph.2010.01.003 CrossRefPubMedGoogle Scholar
  48. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251.  https://doi.org/10.1146/annurev.arplant.59.032607.092804 CrossRefPubMedGoogle Scholar
  49. Yan YX, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109:E1192–E1200.  https://doi.org/10.1073/pnas.1201616109 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F (2014) PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203:437–448.  https://doi.org/10.1111/nph.12824 CrossRefPubMedGoogle Scholar
  52. Zhang XG, Oppenheimer DG (2004) A simple and efficient method for isolating trichomes for downstream analyses. Plant Cell Physiol 45:221–224CrossRefPubMedGoogle Scholar
  53. Zhang ZT, Zhou Y, Li Y, Shao SQ, Li BY, Shi HY, Li XB (2010) Interactome analysis of the six cotton 14–3-3 s that are preferentially expressed in fibres and involved in cell elongation. J Exp Bot 61:3331–3344.  https://doi.org/10.1093/jxb/erq155 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458.  https://doi.org/10.1038/nbt.1843 CrossRefPubMedGoogle Scholar
  55. Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22:1530–1535.  https://doi.org/10.1016/j.cub.2012.06.039 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhou Y, Zhang ZT, Li M, Wei XZ, Li XJ, Li BY, Li XB (2015) Cotton (Gossypium hirsutum) 14–3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling. Plant Biotechnol J 13:269–280.  https://doi.org/10.1111/pbi.12275 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Xiao-Cong Xia
    • 1
  • Qian-Qian Hu
    • 1
  • Wen Li
    • 1
  • Yun Chen
    • 1
  • Li-Hong Han
    • 1
  • Miao Tao
    • 1
  • Wen-Ying Wu
    • 1
  • Xue-Bao Li
    • 1
  • Geng-Qing Huang
    • 1
  1. 1.Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life SciencesCentral China Normal UniversityWuhanChina

Personalised recommendations