Cryopreservation of the Norway spruce tissue culture line able to produce extracellular lignin

  • Sonja Viljamaa
  • Evgenia Dikareva
  • Jonne Tolonen
  • Jaanika Edesi
  • Kaloian Nickolov
  • Teresa Laitinen
  • Tapio Laakso
  • Risto Korpinen
  • Pekka Saranpää
  • Soile Jokipii-Lukkari
  • Anna Kärkönen
  • Hely Häggman
Original Article


A cryopreservation method was developed for a Norway spruce (Picea abies L. Karst.) cell line characterised by highly vacuolated cells and ability to produce natural-like extracellular lignin in a cell suspension culture. Spruce callus cultured in a photoperiod of 16 h light, 8 h dark contained two types of callus morphologies. Soft callus was composed of loosely bound cells that dispersed into single cells and small cell aggregates when transferred into liquid medium. The callus with hard morphology had also cells that were more tightly attached to each other; this callus formed bigger cell aggregates in liquid medium in addition to single cells and small cell aggregates. The hard callus contained higher concentration of intracellular phenolic compounds as compared to soft callus. For cryopreservation, a vitrification method with plant vitrification solution 2 (PVS2) was used. To reduce cellular water content, spruce calli were pre-cultured on a culture medium with increasing sucrose concentration (0.2 and 0.4 M; one day on each). The cryopreservation survival rate of callus with hard morphology was significantly higher than that with soft morphology (45 ± 8% and 5 ± 5%, respectively). Pre-culturing in continuous light for several weeks led exclusively to formation of a hard-type callus, which had a survival rate of 48 ± 16% in cryopreservation. Expression of candidate genes of the monolignol biosynthesis pathway, Fourier transform infrared spectra and pyrolysis breakdown products of extracellular lignin were similar in control cultures and those originating from cryopreserved cells suggesting that cryopreservation is a feasible method for long-term storage of the lignin-forming cell line.


Cryopreservation Lignin formation Norway spruce cell culture Picea abies Vitrification 



Caffeoyl-CoA 3-O-methyltransferase


4-Coumarate-CoA ligase


Cinnamyl alcohol dehydrogenase


Fourier transform infrared spectroscopy


Milled wood lignin


Plant vitrification solution 2


Pyrolysis gas chromatography mass spectrometry



We thank Ms Kaija Porkka for the initial characterization of the hard and soft calli. We thank funding from the Academy of Finland (decisions #251390, #256174 and #283245 to A.K.) and the Natural History Society of Oulu (Grant to S.V.). Te. L. thanks the Finnish Cultural Foundation, Häme Regional Fund for funding. Green chemistry from forest—Natural Resources Institute Finland self-funded project is also acknowledged.

Author Contributions

AK, HH, JE, SJ-L and PS conceived and designed the experiments. SV, ED, JT, JE, KN, TeL, TaL, and AK performed the research. RK performed pyrolysis and data analysis. SV, ED, SJ-L, TaL, RK, PS, AK, and HH wrote the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11240_2017_1375_MOESM1_ESM.pdf (742 kb)
Supplementary material 1 (PDF 741 KB)


  1. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  2. Brunow G, Kilpeläinen I, Lapierre C, Lundquist K, Simola LK, Lemmetyinen J (1993) The chemical structure of extracellular lignin released by cultures of Picea abies. Phytochemistry 32:845–850CrossRefGoogle Scholar
  3. Brunow G, Ämmälahti E, Niemi T, Sipilä J, Simola LK, Kilpeläinen I (1998) Labelling of a lignin from suspension cultures of Picea abies. Phytochemistry 47:1495–1500CrossRefGoogle Scholar
  4. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  5. Dedicova B, Nilsson O, Egertsdotter U (2011) Effect of cryopreservation on growth of different elite embryogenic cell lines of Norway spruce (Picea abies (L.) Karst.). Acta Hortcult 908:203–206CrossRefGoogle Scholar
  6. Ehlting J, Shin JJ, Douglas CJ (2001) Identification of 4-coumarate: coenzyme A ligase (4CL) substrate recognition domains. Plant J 27:455–465CrossRefPubMedGoogle Scholar
  7. Gupta DK, Durzan J, Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17:1130–1134CrossRefGoogle Scholar
  8. Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tissue Organ Cult 54:45–53CrossRefGoogle Scholar
  9. Häggman H, Aronen T, Ryynänen L (2000) Cryopreservation of embryogenic cultures of conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 707–728CrossRefGoogle Scholar
  10. Hazubska-Przybył T, Chmielarz P, Michalak M, Dering M, Bojarczuk K (2013) Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tissue Organ Cult 113:303–313CrossRefGoogle Scholar
  11. Heine-Dobbernack E, Kiesecker H, Schumacher HM (2008) Cryopreservation of dedifferentiated cell cultures. In: Reed BM (ed) Plant cryopreservation. A practical guide. Springer, New York, pp 141–165CrossRefGoogle Scholar
  12. Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534CrossRefGoogle Scholar
  13. Jörgenssen J (1990) Conservation of valuable gene resources by cryopreseravation in some forest tree species. J Plant Physiol 136:373–376CrossRefGoogle Scholar
  14. Joshi C, Chiang V (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674CrossRefPubMedGoogle Scholar
  15. Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644CrossRefPubMedGoogle Scholar
  16. Kärkönen A, Koutaniemi S (2010) Lignin biosynthesis studies in plant tissue cultures. J Integr Plant Biol 52:176–185CrossRefPubMedGoogle Scholar
  17. Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353CrossRefPubMedGoogle Scholar
  18. Kärkönen A, Warinowski T, Teeri TH, Simola LK, Fry SC (2009) On the mechanism of apoplastic H2O2 production during lignin formation and elicitation in cultured spruce cells—peroxidases after elicitation. Planta 230:553–567CrossRefPubMedGoogle Scholar
  19. Kärkönen A, Meisrimler CN, Takahashi J, Väisänen E, Laitinen T, Jiménez Barboza LA, Holmström S, Salonvaara S, Wienkoop S, Fagerstedt KF, Lüthje S (2014) Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes. Physiol Plant 152:599–616CrossRefPubMedGoogle Scholar
  20. Koutaniemi S, Toikka MM, Kärkönen A, Mustonen M, Lundell T, Simola LK, Kilpeläinen IA, Teeri TH (2005) Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin forming Picea abies suspension culture. Plant Mol Biol 58:141–157CrossRefPubMedGoogle Scholar
  21. Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328CrossRefPubMedGoogle Scholar
  22. Koutaniemi S, Malmberg HA, Simola LK, Teeri TH, Kärkönen A (2015) Norway spruce (Picea abies) laccases: characterisation of a laccase in a lignin-forming tissue culture. J Integr Plant Biol 57:341–348CrossRefPubMedGoogle Scholar
  23. Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25CrossRefPubMedGoogle Scholar
  24. Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28:22–36CrossRefGoogle Scholar
  25. Laitinen T, Morreel K, Delhomme N, Gauthier A, Schiffthaler B, Nickolov K, Brader G, Lim KJ, Teeri TH, Street N, Boerjan W, Kärkönen A (2017) A key role for apoplastic H2O2 in Norway spruce phenolic metabolism. Plant Physiol 174:1449–1475CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li X, Wu HX, Southerton SG (2010) Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytol 187:764–776CrossRefPubMedGoogle Scholar
  27. Mamedes-Rodrigues TC, Batista DS, Napoleão TA, Cruz ACF, Fortini EA, Nogueira FTS, Romanel E, Otoni WC (2017) Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon. Plant Cell Tissue Organ Cult. Google Scholar
  28. Merkle S, Montello P, Reece H, Kong L (2014) Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 28:1767–1776CrossRefGoogle Scholar
  29. Nagy NE, Franceschi V, Kvaalen H, Solheim H (2005) Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 19:694–702Google Scholar
  30. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73CrossRefGoogle Scholar
  31. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Ellen Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson Å, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584Google Scholar
  32. Patel RV, Nahal HK, Breit R, Provart NJ (2012) BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J 71:1038–1050CrossRefPubMedGoogle Scholar
  33. Pierik RLM (1987) In vitro culture of higher plants. Martinus Nijhoff Publishers, Dordrech, p 344CrossRefGoogle Scholar
  34. Pritchard HW, Moat JF, Ferraz JBS, Marks TR, Camargo JLC, Nadarajan J, Ferraz IDK (2014) Innovative approaches to the preservation of forest trees. For Ecol Manag 333:88–98CrossRefGoogle Scholar
  35. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefPubMedGoogle Scholar
  36. Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation–vitrification protocols. In: Reed BM (ed) Plant Cryopreservation. A practical guide. Springer, New York, pp 33–57CrossRefGoogle Scholar
  37. Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallosc L, Daniel A. Jacobo-Velázquez (2013) The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods 5:5990–5999CrossRefGoogle Scholar
  38. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRefGoogle Scholar
  39. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35CrossRefGoogle Scholar
  41. Simola LK, Lemmetyinen J, Santanen A (1992) Lignin release and photomixotrophism in suspension cultures of Picea abies. Physiol Plant 84:374–379CrossRefGoogle Scholar
  42. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  43. Stuible H, Büttner D, Ehlting J, Hahlbrock K, Kombrink E (2000) Mutational analysis of 4-coumarate: CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes. FEBS Lett 467:117–122CrossRefPubMedGoogle Scholar
  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tang R, Zhang X-Q, Li Y-H, Xie X-M (2014) Cloning and in silico analysis of a cinnamyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 93:145–158CrossRefPubMedGoogle Scholar
  46. Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124CrossRefGoogle Scholar
  47. Uchendu EE, Leonard SW, Traber MG, Reed BM (2010) Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep 29:25–35CrossRefPubMedGoogle Scholar
  48. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson GG, Halpin C, Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 341:1103–1106Google Scholar
  50. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129CrossRefPubMedGoogle Scholar
  52. Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914Google Scholar
  53. Warinowski T, Koutaniemi S, Kärkönen A, Sundberg I, Toikka M, Simola LK, Kilpeläinen I, Teeri TH (2016) Peroxidases bound to the growing lignin polymer produce natural-like extracellular lignin in a cell culture of Norway spruce. Front Plant Sci 7:1523. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology and GeneticsUniversity of OuluOuluFinland
  2. 2.Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
  3. 3.Natural Resources Institute Finland (Luke), Production Systems, Biomass Characterization and PropertiesEspooFinland
  4. 4.Natural Resources Institute Finland (Luke), Production Systems, Biorefinery and BioproductsEspooFinland
  5. 5.Natural Resources Institute Finland (Luke), Plant GeneticsHelsinkiFinland
  6. 6.Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
  7. 7.Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland

Personalised recommendations