Skip to main content
Log in

A simple Agrobacterium tumefaciens-mediated transformation method for rapid transgene expression in Medicago truncatula root hairs

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Medicago truncatula is widely used as a model legume for symbiotic and pathogenic microbial interaction studies. Although a number of Agrobacterium-mediated transformation methods have been developed for M. truncatula, a rapid root transformation system was not yet available for this model plant. Here, we describe an easy method for rapid transgene expression in root hairs of M. truncatula, using young seedlings co-cultivated with the disarmed hypervirulent A. tumefaciens strain AGL1. This method leads to efficient expression of various GUS and fluorescent reporters in M. truncatula root hairs. We showed that transgene expression is detected as soon as 2 days following co-culture, in root hairs of a particular responsive zone lying 0.5–2 cm behind the root tip. This method can be used with a variety of M. truncatula genotypes, and is particularly useful for rapid investigation of the sub-cellular localization of fluorescent fusion proteins. Moreover, combining distinct Agrobacterium strains during the initial co-culture step efficiently generates co-transformed root hairs, suitable for co-localization of different fluorescent fusion proteins in the same cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andriankaja A, Boisson-Demier A, Frances L et al (2007) AP2-ERF transcription factors mediate nod factor-dependent MtENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19:2866–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker DG, Bianchi S, Blondon F et al (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F et al (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Dernier A, Andriankaja A, Chabaud M et al (2005) MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Mol Plant-Microbe Interact 18:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Campanoni P, Sutter JU, Davis CS et al (2007) A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs. Plant J 51:322–330

    Article  CAS  PubMed  Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C et al (1996) Transformation of barrel medic (Medicago truncatula Gaertn) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep 15:305–310

    Article  CAS  PubMed  Google Scholar 

  • Chabaud M, de Carvalho-Niebel F, Barker DG (2003) Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51

    Article  CAS  PubMed  Google Scholar 

  • Chabaud M, Boisson-Dernier A, Journet E-P et al (2008) Agrobacterium-mediated transformation of Medicago truncatula. In: Kirti P (ed) Handbook of new technologies for genetic improvement of legumes. CRC press, Boca Raton, pp 45–67

    Google Scholar 

  • Chen X, Equi R, Baxter H et al (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • das Neves LO, Duque SRL, de Almeida JS et al (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M-truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405

    Article  Google Scholar 

  • Du H, Wu H, Yan J, Li J (2010) Effects of basal media, salt concentrations, antioxidant supplements and co-effects on the Agrobacterium-mediated transformation efficiency in maize. African J Biotechnol 9:1135–1143

    Article  CAS  Google Scholar 

  • Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    CAS  PubMed  Google Scholar 

  • Gresshoff PM, Hayashi S, Biswas B et al (2015) The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production. J Plant Physiol 172:128–136

    Article  CAS  PubMed  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC et al (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Nat Acad Sci USA 94:2122–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Cult 127:561–584

    Article  CAS  Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localized transient expression of Gus in leaf disks following cocultivation with Agrobacterium. Plant Mol Biol 1:61–72

    Google Scholar 

  • Jin SG, Komari T, Gordon MP et al (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Journet EP, Pichon M, Dedieu A et al (1994) Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa. Plant J 6:241–249

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Li M, Sinharoy S, Verdier J (2016) A Snapshot of Functional Genetic Studies in Medicago truncatula. Front Plant Sci 7:1175

    PubMed  PubMed Central  Google Scholar 

  • Krenek P, Samajova O, Luptovciak I et al (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 33:1024–1042

    Article  CAS  PubMed  Google Scholar 

  • Lagos ML, Maruyama F, Nanniperi P, Mora ML, Ogram A, Jorquera MA (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini-review. J Soil Sci Plant Nutr 15:504–523

    CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation competent Arabidopsis genomic library in. Agrobacterium Bio Technol 9:963–967

    Article  CAS  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J et al (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Picard K, Lee R, Hellens R et al (2013) Transient gene expression in Medicago truncatula leaves via agroinfiltration. Legume Genomics 1069:215–226

    Article  CAS  Google Scholar 

  • Rival P, de Billy F, Bono JJ et al (2012) Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development 139:3383–3391

    Article  CAS  PubMed  Google Scholar 

  • Sagan M, Morandi D, Tarenghly E et al (1995) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn) after gamma ray mutagenesis. Plant Sci 111:63–71

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Schneider CQ, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieberer BJ, Chabaud M, Timmers AC et al (2009) A Nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somleva MN, Tomaszewski Z, Conger BV (2002) Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci 42:2080–2087

    Article  CAS  Google Scholar 

  • Stachel SE, Timmerman EW, Zanbryski PC (1986) A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Nat Acad USA 83:379–383

    Article  CAS  Google Scholar 

  • Trieu AT, Harrison MJ (1996) Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep 16:6–11

    Article  CAS  PubMed  Google Scholar 

  • Trinh TH, Ratet P, Kondorosi E et al (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    Article  CAS  Google Scholar 

  • Van Loock B, Markakis MN, Verbelen J-P et al (2010) High-throughput transient transformation of Arabidopsis roots enables systematic colocalization analysis of GFP-tagged proteins. Plant Sig Behav 5:261–263

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A et al (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Wu H-Y, Liu K-H, Wang Y-C et al (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32:285–298

    Article  CAS  PubMed  Google Scholar 

  • Zhong LH, Zhang YP, Liu HC et al (2016) Agrobacterium-mediated transient expression via root absorption in flowering Chinese cabbage. Springerplus 5:1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Chandrasekharan MB, Hall TC (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Christophe Jacquet (LRSV, Toulouse) for providing F83.005-5 seeds, Sandra Bensmihen (LIPM, Toulouse) for the pLeEXT-GUS and pCO2-GUS constructs, the FRAIB imaging platform for technical support on confocal imaging, Marie-Françoise Jardinaud (LIPM, Toulouse) for helpful advices on statistical analyses, David G. Barker (LIPM, Toulouse) for helpful discussions and the reviewers for valuable comments. This work was supported by the French Laboratory of Excellence project “TULIP” (ANR-10-LABX-41) and the ANR COME-IN (ANR- 14–CE35-0007).

Author information

Authors and Affiliations

Authors

Contributions

MC and F de CN conceived and designed research. MC and CR conducted experiments and analyzed the data. JF and F de CN contributed with microscopy analyses. MC made statistical analyses. MC, JF, and F de CN wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fernanda de Carvalho-Niebel or Mireille Chabaud.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Sergio J. Ochatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 597 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remblière, C., Fournier, J., de Carvalho-Niebel, F. et al. A simple Agrobacterium tumefaciens-mediated transformation method for rapid transgene expression in Medicago truncatula root hairs. Plant Cell Tiss Organ Cult 132, 181–190 (2018). https://doi.org/10.1007/s11240-017-1323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1323-3

Keywords

Navigation