Skip to main content
Log in

From chromosome doubling to DNA sequence changes: outcomes of an improved in vitro procedure developed for allotriploid “Híbrido de Timor” (Coffea arabica L. × Coffea canephora Pierre ex A. Froehner)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Since 1966, chromosome doubling has been performed mainly in vitro, associating anti-tubulin treatment and different plant tissues showing proliferative cells. Despite the achieved improvements, some bottlenecks have been pointed out, such as the low rate of polyploids and high rate of mixoploid plantlets. To overcome these hurdles, some approaches have indicated that indirect somatic embryogenesis (ISE) constitutes an alternative trigger for chromosome doubling, especially for homoploid and anorthoploid germplasms. In this way, a guideline has been developed for hexaploidization of the Coffea line “Híbrido de Timor” (HT) ‘CIFC 4106’ (anorthoploid, 3x = 33 chromosomes, 1C = 2.10 pg, Coffea canephora × Coffea arabica) from friable embryogenic calli (FEC) treated with colchicine. From this, a relatively high percentage (49.3%) of HT hexaploids (6x = 66 chromosomes, 2C = 4.20 pg) was obtained, without recovery of mixoploids. Besides confirmation of endomitosis induction through the obtained hexaploids, SSR markers revealed that the FEC/colchicine strategy also resulted in loss of allelic diversity in 39 regenerated HT plantlets, demonstrating its genotoxic effect. Considering these results, the present procedure resolved the main bottlenecks for chromosome doubling, which have been reported since the discovery and isolation of the anti-tubulin colchicine in 1930. Hexaploid HT plantlets have enriched Coffea germplasm banks as a new genetic resource since the resolution of their karyotype and DNA sequence. Just as the true allotetraploid C. arabica and the allotriploid HT ‘CIFC 4106’, the hexaploid HT is relevant to investigate the genomic and phenotypic changes arising from polyploidization events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

CIM:

Callogenesis induction medium

FCM:

Flow cytometry

FEC:

Friable embryogenic callus

FEC-CT:

Friable embryogenic callus—colchicine-treated

FEC-NCT:

Friable embryogenic callus—not colchicine-treated

GA3 :

Gibberellic acid

GM:

Germination medium

HT:

Híbrido de Timor

HT-ED:

Híbrido de Timor—explant donors

ISE:

Indirect somatic embryogenesis

RM:

Regeneration medium

SE:

Somatic embryos

SSR:

Simple sequence repeat

References

  • Anthony F, Diniz LE, Combes MC, Lashermes P (2010) Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar. Plant Syst Evol 285:51–64. doi:10.1007/s00606-009-0255-8

    Article  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res Rev Mutat 613:76–102. doi:10.1016/j.mrrev.2006.06.001

    Article  CAS  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173. doi:10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Barrett HC (1974) Colchicine-induced polyploidy in Citrus. Bot Gaz 135:29–41. doi:10.1086/336726

    Article  CAS  Google Scholar 

  • Cenci A, Combes MC, Lashermes P (2012) Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments. Plant Mol Biol 78:135–145. doi:10.1007/s11103-011-9852-3

    Article  CAS  PubMed  Google Scholar 

  • Clarindo WR, Carvalho CR, Caixeta ET, Koehler AD (2013) Following the track of Híbrido de Timor origin by cytogenetic and flow cytometry approaches. Genet Resour Crop Evol 60:2253–2259. doi:10.1007/s10722-013-9990-3

    Article  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with Plants: an overview. In: Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, Weinheim, pp 41–65

    Chapter  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ducos JP, Alenton R, Reano JF, Kanchanomai C, Deshayes A, Pétiard V (2003) Agronomic performance of Coffea canephora P. trees derived from large-scale somatic embryo production in liquid medium. Euphytica 131:215–223. doi:10.1023/A:1023915613158

    Article  CAS  Google Scholar 

  • Dutt M, Vasconcellos M, Song KJ, Gmitter FG, Grosser JW (2010) In vitro production of autotetraploid Ponkan mandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphytica 173:235–242. doi:10.1007/s10681-009-0098-y

    Article  CAS  Google Scholar 

  • Faleiro FG, Kannan B, Altpeter F (2016) Regeneration of fertile, hexaploid, interspecific hybrids of elephantgrass and pearl millet following treatment of embryogenic calli with antimitotic agents. Plant Cell Tissue Organ Cult 124:57–67. doi:10.1007/s11240-015-0874-4

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. doi:10.1023/A:1024033216561

    Article  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. doi:10.1016/S0027-5107(00)00065-8

    Article  CAS  PubMed  Google Scholar 

  • Gao SL, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tissue Organ Cult 70:289–293. doi:10.1023/A:1016577002039

    Article  CAS  Google Scholar 

  • Gmitter FG, Ling X (1991) Embryogenesis in vitro and nonchimeric tetraploid plant recovery from undeveloped citrus ovules treated with colchicine. J Am Soc Hortic Sci 116:317–321

    Google Scholar 

  • Gmitter FG, Ling X, Cai C, Grosser JW (1991) Colchicine-induced polyploidy in Citrus embryogenic cultures, somatic embryos, and regenerated plantlets. Plant Sci 74:135–141. doi:10.1016/0168-9452(91)90264-9

    Article  CAS  Google Scholar 

  • Greilhuber J, Doležel J (2009) 2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma 118:391–400. doi:10.1007/s00412-009-0205-9

    Article  PubMed  Google Scholar 

  • Hamon P, Hamon S, Razafinarivo NJ, Guyot R, Siljak-Yakovlev S, Couturon E, Crouzillat D, Rigoreau M, Akaffou S, Rakotomalala JJ, de Kochko A (2015) Coffea genome organization and evolution. In: Coffee in health and disease prevention. Academic, San Diego, pp 29–37

    Chapter  Google Scholar 

  • Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond B Biol Sci 363:3055–3069. doi:10.1098/rstb.2008.0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakupciak JP, Wells RD (1999) Genetic instabilities in (CTG· CAG) repeats occur by recombination. J Biol Chem 274:23468–23479. doi:10.1074/jbc.274.33.23468

    Article  CAS  PubMed  Google Scholar 

  • Jaskani MJ, Khan IA, Yakub MS (1996) Regeneration of triploid from Citrus endosperm. Proc Int Soc Citricult 1:128–129

    Google Scholar 

  • Khosravi AR, Kadir MA, Kadzemin SB, Zaman FQ, De Silva AE (2009) RAPD analysis of colchicine induced variation of the Dendrobium Serdang beauty. Afr J Biotechnol 8:1455–1465

    CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214. doi:10.1007/BF02342540

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266. doi:10.1007/s004380050965

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the SH3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980. doi:10.1007/s11295-010-0306-x

    Article  Google Scholar 

  • Levan A, Müntzing A (1963) Terminology of chromosome numbers. Portug Acta Biol 7:1–16

    Google Scholar 

  • Liu XZ, Lin H, Mo XY, Long T, Zhang HY (2009) Genetic variation in colchicine-treated regenerated plants of Eucalyptus globulus Labill. J Genet 88:345–348. doi:10.1007/s12041-009-0051-9

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Bomblies K (2016) Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol 30:116–122. doi:10.1016/j.pbi.2016.02.004

    Article  PubMed  Google Scholar 

  • Métais I, Hamon B, Jalouzot R, Peltier D (2002) Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theor Appl Genet 104:1346–1352. doi:10.1007/s00122-002-0901-9

    Article  PubMed  Google Scholar 

  • Meyer EM, Touchell DH, Ranney TG (2009) In vitro shoot regeneration and polyploid induction from leaves of Hypericum species. Hortic Sci 44:1957–1961

    Google Scholar 

  • Missio RF, Caixeta ET, Zambolim EM, Zambolim L, Sakiyama NS (2009) Development and validation of SSR markers for Coffea arabica L. Crop Breed Appl Biotechnol 9:361–371

    Article  CAS  Google Scholar 

  • Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewiez Z, Crissman HA, Robinson JP Methods in cell biology, vol 33. Academic Press, San Diego, pp 105–110

    Google Scholar 

  • Petersen KK, Hagberg P, Kristiansen K (2003) Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tissue Organ Cult 73:137–146. doi:10.1023/A:1022854303371

    Article  Google Scholar 

  • Praça-Fontes MM, Carvalho CR, Clarindo WR (2011) C-value reassessment of plant standards: an image cytometry approach. Plant Cell Rep 30:2303–2312. doi:10.1007/s00299-011-1135-6

    Article  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst 29:467–501. doi:10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Rauf S, Khan IA, Khan FA (2006) Colchicine-induced tetraploidy and changes in allele frequencies in colchicine-treated populations of diploids assessed with RAPD markers in Gossypium arboreum L. Turk J Biol 30:93–100

    CAS  Google Scholar 

  • Samson NP, Campa C, Gal LL, Noirot M, Thomas G, Lokeswari TS, De Kochko A (2006) Effect of primary culture medium composition on high frequency somatic embryogenesis in different Coffea species. Plant Cell Tissue Organ Cult 86:37–45. doi:10.1007/s11240-006-9094-2

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016a) Regeneration of allotriploid Coffea plants from tissue culture: resolving the propagation problems promoted by irregular meiosis. Cytologia 81:125–132. doi:10.1508/cytologia.81.125

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016b) The polyploidy and its key role in plant breeding. Planta 243:281–296. doi:10.1007/s00425-015-2450-x

    Article  CAS  PubMed  Google Scholar 

  • Song P, Kang W, Peffley EB (1997) Chromosome doubling of Allium fistulosum × A. cepa interspecific F1 hybrids through colchicine treatment of regenerating callus. Euphytica 93:257–262. doi:10.1023/A:1002957800957

    Article  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Suzuki K, Takatsu Y, Gonai T, Kasumi M (2005) Plant regeneration and chromosome doubling of wild Gladiolus species. Acta Hortic 673:175–181. doi:10.17660/ActaHortic.2005.673.20

    Article  CAS  Google Scholar 

  • Temel A, Gözükirmizi N (2015) Genotoxicity of metaphase-arresting methods in barley. Turk J Biol 39:139–146

    Article  CAS  Google Scholar 

  • van Boxtel J, Berthouly M (1996) High frequency somatic embryogenesis from coffee leaves. Plant Cell Tissue Organ Cult 44:7–17. doi:10.1007/BF00045907

    Article  Google Scholar 

  • Wu JH, Mooney P (2002) Autotetraploid tangor plant regeneration from in vitro Citrus somatic embryogenic callus treated with colchicine. Plant Cell Tissue Organ Cult 70:99–104. doi:10.1023/A:1016029829649

    Article  CAS  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci 108:7908–7913. doi:10.1073/pnas.1014138108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang M, Deng X (2007) Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tissue Organ Cult 89:211–216. doi:10.1007/s11240-007-9240-5

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília—DF, Brazil, Grants: 443801/2014-2), the Fundação de Amparo à Pesquisa do Espírito Santo (FAPES, Vitória—ES, Brazil, grant: 65942604/2014) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília—DF, Brazil) for financial support. We also thank Eveline Teixeira Caixeta (Embrapa Café, Empresa Brasileira de Pesquisa Agropecuária, BIOAGRO, Laboratório BioCafé, Universidade Federal de Viçosa, MG, Brazil) for providing leaves in 2011 of the “Híbrido de Timor” ‘CIFC 4106’ plants.

Author information

Authors and Affiliations

Authors

Contributions

The authors SNA, SMC and CWR conducted the tissue culture experiments and in vitro chromosome doubling. CWR and OSC carried out the cytogenetic analyses. A-SPM and STCB executed the SSR molecular analyses. CWR and CCR conducted the flow cytometry analysis. NACP did the statistical analysis. All authors equally contributed for manuscript editing and revision and approved the final manuscript for submission.

Corresponding author

Correspondence to Wellington Ronildo Clarindo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Nokwanda Pearl Makunga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanglard, N.A., Amaral-Silva, P.M., Sattler, M.C. et al. From chromosome doubling to DNA sequence changes: outcomes of an improved in vitro procedure developed for allotriploid “Híbrido de Timor” (Coffea arabica L. × Coffea canephora Pierre ex A. Froehner). Plant Cell Tiss Organ Cult 131, 223–231 (2017). https://doi.org/10.1007/s11240-017-1278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1278-4

Keywords

Navigation