Skip to main content

Advertisement

Log in

Evaluation of nitrogen efficiency associated traits of starch potato cultivars under in vitro conditions

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Genotype dependent responses to N-deficiency were investigated in vitro as well as in pots grown in a rain-out shelter with a set of 17 potato cultivars with the aim to identify genotypic differences in traits associated with nitrogen uptake and utilization and to compare results obtained in the two test environments. In vitro plantlets were grown under four nitrogen (N) levels (60, 30, 15 and 7.5 mmol/l) for 18 days and their respective traits were assessed after 7, 11, 14 and 18 days of culture (DoC). Considerable differences between genotypes were identified as early as seven DoC regarding N uptake, biomass production, root percentages of the total plant fresh and dry matter as well as chlorophyll (SPAD values) and crude protein concentrations. Significant differences were obtained for total biomass production between the 60, 30 and 15 mmol/l N-level as well as genotypic differences. Furthermore, significant variation between cultivars was identified for traits associated with efficient nitrogen use, e.g. the ability to maintain photosynthesis and N metabolization under N limitation as well as increased root development. No direct correlation was found between biomass production under in vitro conditions and tuber yields determined in pot trials. However, the stability of the plant performance under N-deficiency in the in vitro system as expressed by the membership function value of stress tolerance calculated from 11 traits correlated to the stability of the tuber yield of cultivars grown under limited N supply in pot trials (r = 0.70). The experimental system is thought to be useful for pre-screening of germplasm and investigations of physiological processes associated with nitrogen use efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anithakumari AM, Dolstra O, Vosman B, Visser RGF, van der Linden CG (2011) In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica 181:357–369. doi:10.1007/s10681-011-0446-6

    Article  Google Scholar 

  • Arvin MJ, Donelly DJ (2008) Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. J Agric Sci Technol 10:33–42

    Google Scholar 

  • Barlösius E, Berg E, Brenig B, Frede HG, Looft C, Sattelmacher B, Schnyder H, Zeddies J, Velke H, Schmitz-Möller P (2005) Future perspectives of agricultural science and research. Memorandum of Deutsche Forschungsgemeinschaft. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Bündig C, Vu TH, Meise P, Seddig S, Schum A, Winkelmann T (2016) Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. J Agro Crop Sci. doi:10.1111/jac.12186

    Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu YG (2012) Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res 137:195–201. doi:10.1016/j.fcr.2012.09.008

    Article  Google Scholar 

  • Cormier F, Foulkes J, Hirel B, Gouache D, Moënne-Loccoz Y, Le Gouis J (2016) Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.). Plant Breed 135:255–278. doi:10.1111/pbr.12371

    Article  CAS  Google Scholar 

  • Dawson JC, Huggins DR, Jones SS (2008) Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res 107:89–101. doi:10.1016/j.fcr.2008.01.001

    Article  Google Scholar 

  • Dobránszki J, Tábori KM (2010) Influence of nitrogen supply of potato plantlets on in vitro tuberization pattern under inductive and non-inductive conditions. Potato Res 53:121–127

    Article  Google Scholar 

  • Dobránszki J, Magyar-Tábori K, Takács-Hudák A (2004) Growth and developmental responses of potato to osmotic stress under in vitro conditions. Acta Biol Hung 54:365–372

    Article  Google Scholar 

  • Donelly DJ, Coleman WK, Coleman SE (2003) Potato microtuber production and performance: a review. Am J Potato Res 80: 103–115. doi:10.1007/BF02870209

    Article  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley—I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24:1189–1202

    Article  CAS  Google Scholar 

  • Errebhi M, Rosen CJ, Lauer FI, Martin MW, Bamberg JB, Birong DE (1998) Screening of exotic potato germplasm for nitrogen uptake and biomass production. Am J Potato Res 75:93–100. doi:10.1007/BF02883883

    Article  Google Scholar 

  • Evans NE (1993) A preliminary study on the effects of nitrogen supply on the growth in vitro of nine potato genotypes (Solanum spp). J Exp Bot 44:837–841

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644. doi:10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd JC, Pérez-Alfocea F (2011) Root-targeted biotechnology to mediate hormonal signaling and improve crop stress tolerance. Plant Cell Rep 30:807–823. doi:10.1007/s00299-011-1005-2

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605. doi:10.1016/j.tplants.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  • Gopal J, Iwama K (2007) In-vitro screening of potato against water-stress mediated through sorbitol or PEG. Plant Cell Rep 26:693–700. doi:10.1007/s00299-006-0275-6

    Article  CAS  PubMed  Google Scholar 

  • Gopal J, Iwama K, Jitsuyama Y (2008) Effect of water stress mediated through agar on in vitro growth of potato. In Vitro Cell Dev Biol 44:221–228. doi:10.1007/s11627-007-9102-1

    Article  Google Scholar 

  • Hajari E, Snyman SJ, Watt MP (2014) Inorganic nitrogen uptake kinetics of sugarcane (Saccharum spp.) varieties under in vitro conditions with varying N supply. Plant Cell Tissue Org Cult 117:361–371. doi:10.1007/s11240-014-0445-0

    Article  CAS  Google Scholar 

  • Hajari E, Snyman SJ, Watt MP (2015) Nitrogen use efficiency of sugarcane (Saccharum spp.) varieties under in vitro conditions with varied N supply. Plant Cell Tissue Org Cult 122:21–29. doi:10.1007/s11240-015-0746-y

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387. doi:10.1093/jxb/erm097

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485. doi:10.3390/su3091452

    Article  CAS  Google Scholar 

  • Hudák I, Dobránszki J, Sárdi E, Hevesi M (2010) Changes in carbohydrate content of potato calli during osmotic stress induced by mannitol. Acta Biol Hung 61:234–236

    Article  PubMed  Google Scholar 

  • Khrais T, Leclerc Y, Donnelly DJ (1998) Relative salinity tolerance of potato cultivars assessed by in vitro screening. Am J Potato Res 75: 207–210

    Article  Google Scholar 

  • Lammerts van Bueren ET, Thorup-Kristensen K, Leifert C, Cooper JM, Becker HC (2014) Breeding for nitrogen efficiency: concepts, methods, and case studies. Euphytica 199:1–2. doi:10.1007/s10681-014-1206-1

    Article  Google Scholar 

  • Lea PJ, Azevedo RA (2006) Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Ann Appl Biol 149:243–247. doi:10.1111/j.1744-7348.2006.00101.x

    Article  CAS  Google Scholar 

  • Light SE, Horneck DA, Sullivan DM (2015) Chloride effects on nitrogen uptake in potato production. Proc West Nutr Manag Conf 11:106–112

    Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77. doi:10.1111/j.1365-3040.2005.01306.x

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency to nitrogen utilization. Agron J 74: 562–564. doi:10.2134/agronj1982.00021962007400030037x

    Article  Google Scholar 

  • Morpurgo R (1991) Correlation between potato clones grown in vivo and in vitro under sodium chloride stress conditions. Plant Breeding 107:80–82. doi:10.1111/j.1439-0523.1991.tb00532.x

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ospina CA, Lammerts van Bueren ET, Allefs JJHM, Engel B, van der Putten PEL, van der Linden CG, Struik PC (2014) Diversity of crop development traits and nitrogen use efficiency among potato cultivars grown under contrasting nitrogen regimes. Euphytica 199:13–29. doi:10.1007/s10681-014-1203-4

    Article  CAS  Google Scholar 

  • Sattelmacher B, Klotz F, Marschner H (1990) Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant Soil 123:131–137

    Article  CAS  Google Scholar 

  • Schum A, Jansen G (2012) Physiological response to nitrogen deficiency stress of in vitro grown potato genotypes. Acta Hortic 961:465–472. doi:10.17660/ActaHortic.2012.961.61

    Article  Google Scholar 

  • Schum A, Jansen G (2014) In vitro method for early evaluation of nitrogen use efficiency associated traits in potato. J Appl Bot Food Qual 87:256–264. doi:10.5073/JABFQ.2014.087.036

    Google Scholar 

  • Sharifi M, Hajabbasi M, Kalbasi M, Mobli M (2005) Root morphological characteristics and nitrogen uptake of eight potato (Solanum tuberosum L.) cultivars. J Sci Technol Agric Nat Resour 9:181–193

    Google Scholar 

  • Silla F, Escudero A (2004) Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels. Funct Ecol 18:511–521

    Article  Google Scholar 

  • Simova-Stoilova L, Vassileva V, Feller U (2016) Selection and breeding of suitable crop genotypes for drought and heat periods in a changing climate: which morphological and physiological properties should be considered? Agriculture 6:26. doi:10.3390/agriculture6020026

    Article  Google Scholar 

  • Sivasankar S, Williams RW, Greene TW (2012) Abiotic stress tolerance in plants: an industry perspective. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress, 1st edn. Wiley, Weinheim. doi:10.1002/9783527632930.ch2

    Google Scholar 

  • Song C, Zeng F, Feibo W, Ma W, Zhang G (2011) Proteomic analysis of nitrogen stress-responsive proteins in two rice cultivars differing in N utilization efficiency. J Integr OMICS 1:78–87. doi:10.5584/jiomics.v1i1.22

    Google Scholar 

  • Sprenger H, Rudack K, Schudoma C, Neumann A, Seddig S, Peters R, Zuther E, Kopka J, Hincha DK, Walther D, Köhl K (2015) Assessment of drought tolerance and its potential yield penalty in potato. Funct Plant Biol 42:655–667. doi:10.1071/FP15013

    Article  CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161. doi:10.1038/472159a

    Article  CAS  PubMed  Google Scholar 

  • Tiemens-Hulscher M, Lammerts van Bueren ET, Struik PC (2014) Identifying nitrogen-efficient potato cultivars for organic farming. Euphytica 199:137–154. doi:10.1007/s10681-014-1143-z

    Article  Google Scholar 

  • Veerman A, Wustman R (2006) Potato quality: getting the basics right. In: Haase NU, Haverkort AJ (eds) Potato developments in a changing Europe. Wagening Academic Publishers, Wageningen

    Google Scholar 

  • Vos J (2009) Nitrogen responses and nitrogen management in potato. J Potato Res 52:305–317. doi:10.1007/s11540-009-9145-2

    Article  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gen Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881. doi:10.1093/aob/mcj601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Donnelly DJ (1997) In vitro bioassays for salinity tolerance screening of potato. J Potato Res 40:285–295. doi:10.1007/BF02358010

    Article  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409. doi:10.1126/Science.276.5349.407

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 342:51–59

    Article  Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338. doi:10.1093/jxb/erm114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was conducted with funding provided by the Federal Ministry of Food and Agriculture (BMEL) through the Agency of Renewable Resources (FNR), funding no. 22023311. The authors thank Antje Höxtermann-Gottlob, Marlies Prechel, Simone Steuck and Margrit Jugert for excellent technical assistance. Furthermore, we greatly appreciate the supply of in vitro plant material by the Bayerische Pflanzenzuchtgesellschaft eG & Co KG, Freising; Europlant Pflanzenzucht GmbH, Lüneburg; Dr. K.H. Niehoff, Bütow; Norika GmbH, Sanitz; Saka Pflanzenzucht GmbH & Co KG, Hamburg and Saatzucht Fritz Lange, Bad Schwartau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annegret Schum.

Additional information

Communicated by: Richard E. Veilleux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schum, A., Meise, P., Jansen, G. et al. Evaluation of nitrogen efficiency associated traits of starch potato cultivars under in vitro conditions. Plant Cell Tiss Organ Cult 130, 651–665 (2017). https://doi.org/10.1007/s11240-017-1254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1254-z

Keywords

Navigation