Skip to main content
Log in

Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

C3H-type zinc finger proteins play important roles in plant growth, development, and stress responses. A C3H-type zinc finger gene, designated BoC3H, was isolated from broccoli (Brassica oleracea var. italica). The complete coding sequence of BoC3H was 1074 bp in length, encoding 357 amino acids with two CCCH motifs of C-X7-C-X5-C-X3-H and C-X5-C-X4-C-X3-H. The transcripts of BoC3H were profoundly induced by NaCl, and the highest expression level was observed at 18 h after treatment. Four broccoli lines over-expressing the BoC3H gene were obtained, and they exhibited higher germination rates, dry weight and chlorophyll content in response to salt stress as compared to those of wild type plants. Over-expression of BoC3H significantly decreased hydrogen peroxide (H2O2) level, relative electrical conductivity (REC) and malondialdehyde (MDA) contents, but dramatically increased free proline content, catalase, peroxidase and superoxide dismutase enzyme activities, resulting in less cell death in the leaves of transgenic plants. Taken together, our results suggest that BoC3H is likely to contribute to salt stress tolerance by regulating H2O2, REC, free proline, MDA and antioxidant enzyme levels in broccoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2002) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  Google Scholar 

  • Apostolova P, Yordanova R, Popova L (2008) Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen Appl Plant Physiol 3–4:281–294

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bayer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in condition. Ann Clin Biochem 161:559–566

    Article  Google Scholar 

  • Bogamuwa SP, Jang JC (2014) Tandem CCCH zinc finger proteins in plant growth, development and stress response. Plant Cell Physiol 55:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G (2012) Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 13:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Ni M (2006) RED AND FAR-RED INSENSITIVE 2, a RING-domain zinc finger protein, mediates phytochrome-controlled seedling de-etiolation responses. Plant Physiol 140:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469

    Article  CAS  PubMed  Google Scholar 

  • Demir I, Mavi K (2008) Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz Arch Biol Technol 51:897–902

    Article  Google Scholar 

  • Deng H, Liu H, Li X, Xiao J, Wang S (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158:876–889

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull 19:11–15

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Hasani B (2007) Responses of antioxidant defence capacity and photosynthesis of bean (Phaseolus vulgaris L.) plants to copper and manganese toxicity under different light intensities. Acta Biol Szeged 51:93–106

    Google Scholar 

  • Han G, Wang M, Yuan F, Sui N, Song J, Wang B (2014) The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86:237–253

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Miao LX, He CM (2012) Overexpression of an oil radish superoxide dismutase gene in broccoli confers resistance to downy mildew. Plant Mol Biol Rep 30:966–972

    Article  CAS  Google Scholar 

  • John R, Ganeshan U, Singh BN, Kaul T, Reddy MK, Sopory SK, Rajam MV (2016) Over-expression of topoisomerase II enhances salt stress tolerance in tobacco. Front Plant Sci 7:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer S, Kimblin NC, Carrington M (2010) Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics 11:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinfom 5:150–163

    Article  CAS  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol 4:e1108

    Article  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Michel SL (2014) Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc Chem Res 47:2643–2650

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Thomas TL (1998) PEI1, an embryo-specific zinc finger protein gene required for heart-stage embryo formation in Arabidopsis. Plant Cell 10:383–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Li Y, Li H, Wu G (2012) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32(1):104–113

    Article  PubMed  Google Scholar 

  • Li WT, He M, Wang J, Wang YP (2013) Zinc finger protein (ZFP) in plants—a review. Plant Omics J 6:474–480

    CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Khan MR, Li Y, Zhang J, Hu C (2014) Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization. Mol Gen Genom 289:855–872

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TG (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆C T Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • López-Berenguer C, García-Viguera C, Carvajal M (2006) Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants? Plant Soil 279:13–23

    Article  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    CAS  PubMed  Google Scholar 

  • Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B (2012) CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS ONE 7:e40120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogány M, von Rad U, Grün S, Dongó A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol 151:1459–1475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropaged carnation shoots: the role of oxidative stress. Physiol. Planta 120:152–161

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–16

    Article  Google Scholar 

  • Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Smith TE, Grattan SR, Grieve CM, Poss JA, Suarez DL (2002) Salinity’s influence on boron toxicity in broccoli: I. Impacts on yield, biomass, distribution, and water use. Agric Water Manag 97:777–782

    Article  Google Scholar 

  • Srivastava AK, Zhang C, Yates G, Bailey M, Brown A, Sadanandom A (2016) SUMO is a critical regulator of salt stress responses in rice. Plant Physiol 170:2378–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  CAS  PubMed  Google Scholar 

  • Thompson MJ, Lai WS, Taylor GA, Blackshear PJ (1996) Cloning and characterization of two yeast genes encoding members of the CCCH class of zinc finger proteins: zinc finger-mediated impairment of cell growth. Gene 174:225–233

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak FM, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Li X, Yang R, Gu ZX (2016) NaCl treatment improves reactive oxygen metabolism and antioxidant capacity in broccoli sprouts. Hortic Environ Biotechnol 57:640–648

    Article  CAS  Google Scholar 

  • Vallejo F, Tomas-Barberan F, Garcia-Viguera C (2003) Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agr Food Chem 51:3029–3034

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Guo YH, Wu CG, Yang GD, Li YY, Zheng CC (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R (2014) Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Solanum lycopersicum. Mol Genet Genomic 289:965–979

    Article  CAS  Google Scholar 

  • Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011) Proteomic analysis of seed germination under salt stress in soybeans. J Zhejiang Univ Sci B 12:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zhang L, Liu B, Ye Y, Wu Y (2014) Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa). Genet. Mol Biol 37:406–413

    Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yuan S, Xu B, Zhang J, Xie Z, Cheng Q, Yang Z, Cai Q, Huang B (2015) Comprehensive analysis of CCCH-type zinc finger family genes facilitates functional gene discovery and reflects recent allopolyploidization event in tetraploid switchgrass. BMC Genomics 16:129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M (2012) Rhabdomyolosis and its pathogenesis. World. J Emerg Med 3:11–15

    CAS  Google Scholar 

  • Zhou T, Yang X, Wang L, Xu J, Zhang X (2014) GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis. Plant Mol Biol 85:163–177

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169:628–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Public Welfare Technology Research Projects of Zhejiang Province (2016C32091), Taizhou Science and Technology Project (162ny14), Young and Middle-aged Leading Academic Pacemaker Project in Universities of Zhejiang Province (pd2013420), Ecology Key Disciplines of Zhejiang Province in Taizhou University (EKD 2013-03), Shenzhen Overseas Talents Innovation and Entrepreneurship Funding Scheme (The Peacock Scheme), Shenzhen Vegetable Molecular Biotechnological Engineering Lab Scheme (Development and Reform Commission of Shenzhen Municipal Government), and the Natural Science Foundation of China (31301790), Guangdong Natural Science Foundation (S2013040016220).

Author contributions

MJ and J-JJ conceived, designed and carried out the study. L-XM and C-MH carried out the study. MJ wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jiang.

Ethics declarations

Conflict of interest

All authors read and approved the manuscript. The authors declare that they have no conflict of interest.

Additional information

Ming Jiang and Jingjing Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Jiang, JJ., Miao, LX. et al. Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants. Plant Cell Tiss Organ Cult 130, 239–254 (2017). https://doi.org/10.1007/s11240-017-1218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1218-3

Keywords

Navigation