Skip to main content

In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor

Abstract

In the global flower industry, gerbera (Gerbera jamesonii Bolus ex Hooker f.) is ranked within the top 10 cut ornamental flowers. Commercially, micropropagation is more important than seed or vegetative propagation. This study assessed the viability of using a temporary immersion bioreactor (TIB; BIT®) to propagate shoots in vitro. Factors such as immersion frequency (6, 8 and 12 h), additional ventilation (1 min every 2 h) and the length of duration of shoot culture (14, 21, 28 and 35 days) were tested. Immersion every 8 h with additional ventilation produced more shoots with better morphology than the control. The average multiplication rate was 9 shoots/explant across treatments. However, when shoots were immersed every 6 h, shoots had higher fresh and dry weight, but displayed hyperhydricity. No differences in shoots were found when immersion frequency was 8 or 12 h. Additional ventilation (12 min/day) reduced shoot hyperhydricity to 5.24% as compared to the ventilation-free control (31.37%). Shoots receiving additional air supply every 8 h had lower fresh and dry weight with an 89.8% decline in relative water content. The number of shoots/explant increased as culture time increased, 6.7 after 28 days, and 6.1 after 35 days (statistically equal). After 7 and 14 days, shoots were induced to root in the TIB using the same medium but supplemented with IAA. Plantlets were subsequently acclimatized. More than 87% of plantlets survived in a zeolite and sugarcane filter cake (1:1) substrate. This protocol allows for the mass production of gerbera shoots in a simple TIB, with effective rooting and acclimatization. This is the first documented TIB for gerbera.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Ozden Y (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tiss Organ Cult 117(3):65–76

    CAS  Article  Google Scholar 

  • Alvarenga S., Salazar; T. (2015) Micropropagación masiva de Stevia rebaudiana Bertoli en sistema de inmersión temporal. Cultivos Tropicales 36(3):50–57. (in Spanish with an English abstract)

    Google Scholar 

  • Aragón C (2011) Nuevos sistemas de propagación; fisiología y bioquímica de las plantas. Metabolismos del carbono y del estrés oxidativo en plantas propagadas en biorreactores de inmersión temporal (BIT). Editorial Académica Española. Academic Publishing GmbH & Co. KG (ed), Germany, pp 1–105

  • Aragón C, Carvalho L, González J, Escalona M, Amâncio S (2010) Ex vitro acclimatization of plantain plantlets micropropagated in temporary immersion bioreactor. Biol Plant 54(2):237–244

    Article  Google Scholar 

  • Bhatia R, Singh KP, Sharma TR, Jhang T (2011) Evaluation of the genetic fidelity of in vitro propagated gerbera (Gerbera jamesonii Bolus) using DNA-based markers. Plant Cell Tiss Organ Cult 5:104–131

    Google Scholar 

  • Blakesley D, Constantine D (1992) Uptake and metabolism of 6-benzyladenine in shoot cultures of a range of species. Plant Cell Tiss Organ Cult 28:183–186

    CAS  Article  Google Scholar 

  • Burger DW (1988) Guidlines for autoclaving liquid media used in plant tissue culture. HortScience 23(6):1066–1068

    Google Scholar 

  • Cardoso JC, Teixeira da Silva JA (2011) Micropropagation of Gerbera using chloride dioxide (ClO2) to sterilize the culture medium. In Vitro Cell Develop Biol 48(3): 362–364

    Article  Google Scholar 

  • Cardoso JC, Teixeira da Silva JA (2013) Gerbera micropropagation. Biotechnol Adv 31(8):1344–1357

    CAS  Article  PubMed  Google Scholar 

  • Cardoso JC, Lanzoni M, Bonfante I, Teixeira da Silva JA (2013) Pre-acclimatizationin the greenhouse: an alternative to optimizing the micropropagation of Gerbera. Sci Hortic 164:616–624

    CAS  Article  Google Scholar 

  • Chakabrarty D, Datta SK (2008) Micropropagation of Gerbera: lipid peroxidation and antioxidante ensyme activities during acclimatization process. Acta. Physiol Plant 30:325–331

    Article  Google Scholar 

  • Chakabrarty IM, Laha RG, Roy J. 1967. Handbook of methods of applied statistics, vol I, John Wiley and Sons, Hoboken, pp 392–394

    Google Scholar 

  • Chakrabarty D, Park SY, Ali MB, Shen SK, Paek KY (2006) Hyperhydricity in apple: ultrastructural and physiological aspects. Tree Physiol 26(3):377–388

    CAS  Article  PubMed  Google Scholar 

  • Daquinta M, Mosqueda O, González MT, Benega R, Teixeira da Silva JA (2007) Shoot proliferation of Caladium × hortulanum in a temporary immersion system. Floric Ornam Biotechnol 1(1):70–72

    Google Scholar 

  • Escalona M (2006) Temporary immersion beats traditional techniques on all fronts. Prophyta Annu pp 48–50.

  • Escalona M, Lorenzo JC, González B, Daquinta M, Borroto C, González JL, Desjardins Y (1999) Pineapple micropropagation in temporary immersion systems. Plant Cell Rep 18(9):743–748

    CAS  Article  Google Scholar 

  • Escalona M, Lorenzo JC, Borroto CG, Daquinta MA (2003) Patente Cubana. No. 22947

  • Etienne E, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tiss Organ Cult 69(3):215–231

    Article  Google Scholar 

  • González R, Ríos D, Avilés F, Sánchez-Olate M (2011) Multiplicación in vitro de Eucalyptus globulus mediante sistema de inmersión temporal. Bosque 32(2):147–154. (in Spanish with an English abstract)

    Article  Google Scholar 

  • Hahn EJ, Paek KY (2005) Multiplication of Chrysanthemum shoots in bioreactors as affected by culture method and inoculation density of single node stems. Plant Cell Tiss Organ Cult 81(3):301–306

    Article  Google Scholar 

  • Ivanova M, Van Staden J (2010) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul 60(2):143–150

    CAS  Article  Google Scholar 

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Organ Cult 77(2):181–191

    Article  Google Scholar 

  • Kozai T, Smith L (1995) Environmental control in plant tissue culture: general introduction and overview. In: Aitken-Christie J, Kozai T, Smith M (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, pp 301–318

    Chapter  Google Scholar 

  • Levene H (1960) Contributions to probability and statistics: essays in Honor of Harold Hotelling, Olkin I et al (eds), Stanford University Press, Palo Alto, pp 278–292

    Google Scholar 

  • Ludwing F, Guerrero AC, Fernández DM, Villas Bôas RL (2010) Análise de crescimento de gérbera de vaso conduzida em diferentes substratos. Horticultura Brasileira 4:28–70. (in Portuguese with an English abstract)

    Google Scholar 

  • Machado P, Agramante D, Almanza N, Díaz D, Gómez L (2002) Micropropagación de Gerbera jamessonii H. Bolus. Revista de Biotecnología Vegetal 2(3):169–178. (in Spanish with an English abstract)

    Google Scholar 

  • Majada JP, Fal MA, Sánchez-Tamís R (1997) Micropropagation of Ilex aquifolium L. In Vitro Cell Develop Biol 33:62–69

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–479

    CAS  Article  Google Scholar 

  • Niedz RP, Hyndman SE, Evens TJ, Weathersbee III AA (2014) Mineral nutrition and in vitro growth of Gerbera hybrida (Asteraceae). In Vitro Cell Develop Biol 50(4):458–470

    CAS  Article  Google Scholar 

  • Nivohanintsoa R, Ludget E (2014) Effect of growth regulators 6-benzylaminopurine and 2-naphtalene acetic acid on the in vitro shoot mutiplication from nodal segment of Medinilla mandrakensis (Melastomataceae). Int J Biochem Biotechnol 3(1):504–510

    Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss Organ Cult 81:287–300

    Article  Google Scholar 

  • Pospóšilová J, Tichá I, Kadlecek P, Haisel D, Plzáková S (1999) Aclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42(4):481–497

    Article  Google Scholar 

  • Prasad M, P (2014) In-vitro optimization of growth hormones in the micropropagation of Gerbera species. Int J Curr Biotechnol 2(2):1–5

    CAS  Google Scholar 

  • Rahman M, Ahmed B, Islam R, Mandal A, Hossain M (2014) A biotechnological approach for the production of red gerbera (Gerbera jamesonii Bolus). Nova J Med Biol Sci 2(1):1–6

    CAS  Article  Google Scholar 

  • Roels S, Noceda C, Escalona M, Sandoval J, Cañal M, Rodríguez R, Debergh P (2006) The effects of headspace renewal in a temporary immersion biorreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tiss Organ Cult 84:138–146

    Article  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120(1):152–161

    CAS  Article  PubMed  Google Scholar 

  • Sánchez J, Daquinta M, Capote I, Teixeira da Silva JA, Chadwick B (2009) Effect of the frequency of immersion and paclobutrazol in the propagation of Zantedeschia spp. in temporary immersion systems. Floriculture and Ornamental. Biotechnology 3(1):46–48

    Google Scholar 

  • Sánchez J, Daquinta M, Capote I, Teixeira da Silva JA (2011) Shoot propagation of Zantedeschia sp. in a temporary immersion system—effect of culture parameters on plant proliferation and quality. Floric Ornam Biotecnol 5(1):78–80

    Google Scholar 

  • Son NV, Mokashi AN, Hegde RV, Patil VS, Lingaraju S (2011) Respose of gerbera (Gerbera jamesonii Bolus) varieties to micropropagation. Karnataka J Agric Sci 24(7):354

    Google Scholar 

  • Sreedhar RV, Venkatachalam l, Thimmaraju R, Bhagyalakshmi N, Narayan MS, Ravishankar GA (2008) Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biol Plant 52(2):355–360

    CAS  Article  Google Scholar 

  • Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M, Cella R, Falavigna A (eds) Current issues in plant molecular and cellular biology. Kluwer Academic Publishers, Dordrecht, pp 105–109

    Chapter  Google Scholar 

  • Watt M (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035

    CAS  Google Scholar 

  • Wilken D, Jiménez E, Gerth A, Gómez-Kosky R, Schumann A, Claus D (2014) Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv. ‘Grande naine’ AAA). In Vitro Cell Develop Biol 50(5):582–589

    CAS  Article  Google Scholar 

  • Xia Y, Deng X, Zhou P, Shima K, Teixeira da Silva JA (2006) The world floriculture industry: dynamics of production and markets. In: Teixeira da Silva, JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues 1st edn, vol IV, Global Science Books, Ltd., Isleworth, pp 336–347

    Google Scholar 

  • Ziv M (1995) In vitro acclimatization. In: Aitken-Christie J, Kozai T, Smith M (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, pp 493–516

    Chapter  Google Scholar 

  • Zobayed SMA, Afreen F, Kubota C, Kozai T (2000) Water control and survival of Ipomoea batatas grown photoautotrophically under forced ventilation and photomixotrophically under natural ventilation. Ann Bot (Lond) 86:603–610

    Article  Google Scholar 

  • NASS (National Agricultural Statistics Service)/USDA (United States Departament of Agriculture). Floriculture crops 2014 Summary. http://www.nass.usda.gov.2016. Accessed 26 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osbel Mosqueda Frómeta or Jaime A. Teixeira da Silva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mosqueda Frómeta, O., Escalona Morgado, M.M., Teixeira da Silva, J.A. et al. In vitro propagation of Gerbera jamesonii Bolus ex Hooker f. in a temporary immersion bioreactor. Plant Cell Tiss Organ Cult 129, 543–551 (2017). https://doi.org/10.1007/s11240-017-1186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1186-7

Keywords

  • Acclimatization
  • Auxins
  • Hyperhydricity
  • Ornamentals
  • Rooting
  • Shoots
  • Survival
  • TIB
  • Temporary immersion bioreactor
  • Ventilation