Skip to main content
Log in

Rapid and accurate early-stage detection of T-DNA/plant flanking sequences of resistant kumquats

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Agrobacterium-mediated genetic transformation is a widely applied tool in plant biotechnology. In this process, genes of interest are integrated into plant genomes via T-DNAs present on plasmids in Agrobacteria. Classical and standard methods for screening transformants, such as Southern blot, are inconvenient for most woodland plants because of extremely low transformation efficiency. For the purpose of identifying transgenic woody lines at early selection stages, a right-border T-DNA/plant conjunction sequence analysis was carried out. By analyzing these sequences, 15 out of 17 kanamycin-resistant kumquats were found to be integrated with foreign genes, and two or more copies were present in 33.3% of the transgenic lines, which is completely concordant with Southern blots. Moreover, T-DNA integration into plant nuclear DNA was random without any sequence hotspots, and cleavage sites are any base of the sequence ‘TGAC’. These results showed that this screening method could not only detect resistant woodland plants rapidly at the early selection stage, but unequivocally detect copy numbers. Compared with other screening technique, this method could save time and effort for conducting genetic transformation in woody plants, and also provides accurate integration information for transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DIG:

Digoxigenin

DSB:

Double-strand break

LB:

Left border

NCBI:

National Center for Biotechnology Information

npt II:

Neomycin phosphotransferase II

PCR:

Polymerase Chain Reaction

RB:

Right border

Ri:

Root-inducing

T-DNA:

Transfer DNA

Ti:

Tumor inducing

Vir :

Virulence

References

  • Ahmad M, Mirza B (2005) An efficient protocol for transient transformation of intact fruit and transgene expression in citrus. Plant Mol Biol Rep 23:419a–419k

    Article  Google Scholar 

  • Bartlett JG, Smedley MA, Harwood WA (2014) Analysis of T-DNA/host-plant DNA junction sequences in single-copy transgenic barley lines. Biology (Basel) 3:39–55

    Google Scholar 

  • Bourras S, Rouxel T, Meyer M (2015) Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology 105:1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11:287–293

    Article  CAS  Google Scholar 

  • Cottage A, Yang AP, Maunders H, de Lacy RC, Ramsay NA (2001) Identification of DNA sequences flanking T-DNA insertions by PCR-walking. Plant Mol Biol Rep 19:321–327

    Article  CAS  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breeding 6:459–468

    Article  Google Scholar 

  • Does MP, Dekker BMM, De Groot MJA, Offringa R (1991) A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol Biol 17:151–153

    Article  CAS  PubMed  Google Scholar 

  • Gambino G, Chitarra W, Maghuly F, Laimer M, Boccacci P, Marinoni DT, Gribaudo I (2009) Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Mol Breeding 24:305–320

    Article  CAS  Google Scholar 

  • Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium-tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA. Proc Natl Acad Sci USA 84:6169–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Gene Dev 5:287–297

    Article  CAS  PubMed  Google Scholar 

  • Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Van Eck J (2016) Modification of plant regeneration medium decreases the time for recovery of Solanum lycopersicum cultivar M82 stable transgenic lines. Plant Cell Tiss Organ Cult 127:417–423

    Article  CAS  Google Scholar 

  • Inagaki S, Henry IM, Lieberman MC, Comai L (2015) High-throughput analysis of T-DNA location and structure using sequence capture. PLoS ONE 10:e0139672

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji J, Braam J (2010) Restriction site extension PCR: a novel method for high-throughput characterization of tagged-DNA fragments and genome walking. PLoS ONE 5:e10577

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung M, Shin SH, Park JM, Lee SN, Lee MY, Ryu KH, Paek KY, Harn CH (2011) Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper. Plant Biotechnol Rep 5:157–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Veena Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 25:1085–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B (2015) The structural features of thousands of T-DNA insertion sites are consistent with a double-strand break repair-based insertion mechanism. Mol Plant 8:1651–1664

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31:543–551

    Article  CAS  PubMed  Google Scholar 

  • Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RC, Ding ZS, Li LB, Kuang TY (2001) A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol Biol Rep 19:379a–379e

    Article  CAS  Google Scholar 

  • Maurer JJ (2011) Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol 2:259–279

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller AE, Kamisugi Y, Gruneberg R, Niedenhof I, Horold RJ, Meyer P (1999) Palindromic sequences and A + T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol 291:29–46

    Article  CAS  PubMed  Google Scholar 

  • Oltmanns H, Frame B, Lee LY, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Roy SC (2015) Gene transfer in higher plants for the development of genetically modified crops (GM crops). Int J Curr Adv Res 4:132–148

    Google Scholar 

  • Takano M, Egawa H, Ikeda JE, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Ren Z, Krczal G (2000) An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep 19:881–887

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • van Kregten M, Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M (2016) T-DNA integration in plants results from polymerase-θ -mediated DNA repair. Nat Plants 2:16164

    Article  PubMed  Google Scholar 

  • Wei S, Xi YZ, Song DP, Wei H, Gruber MY, Gao MJ, Parkin I, Kachatourians G, Hannoufa A (2015) Quantitative and structural analyses of T-DNA tandem repeats in transgenic Arabidopsis SK mutant lines. Plant Cell Tiss Organ Cul 123:183–192

    Article  CAS  Google Scholar 

  • Yang LT, Ding JY, Zhang CM, Jia JW, Weng HB, Liu WX, Zhang DB (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xu CJ, Hu GB, Chen KS (2007) Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia. Biol Plant 51:541–545

    Article  CAS  Google Scholar 

  • Yang L, Wang CC, Wang LH, Xu CJ, Chen KS (2013) An efficient multiplex PCR assay for early detection of Agrobacterium tumefaciens in transgenic plant materials. Turk J Agric For 37:157–162

    CAS  Google Scholar 

  • Zhou YX, Newton RJ, Gould JH (1997) A simple method for identifying plant/T-DNA junction sequences resulting from Agrobacterium-mediated DNA transformation. Plant Mol Biol Rep 15:246–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Zhejiang Province (LY16C150001 and LY14C150001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Chen, M., Shao, N. et al. Rapid and accurate early-stage detection of T-DNA/plant flanking sequences of resistant kumquats. Plant Cell Tiss Organ Cult 129, 261–269 (2017). https://doi.org/10.1007/s11240-017-1174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1174-y

Keywords

Navigation