Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system

  • J. L. Spinoso-Castillo
  • R. A. Chavez-Santoscoy
  • Nina Bogdanchikova
  • J. A. Pérez-Sato
  • V. Morales-Ramos
  • J. J. Bello-Bello
Original Article


Microbial contamination is a serious problem in temporary immersion systems (TIS) during commercial micropropagation. The use of adequate doses of silver nanoparticles (AgNPs), formulated as Argovit™, is an alternative to reduce the contamination indices and promote development in plants. The aim of this study was to evaluate the antimicrobial and hormetic effects of Argovit on in vitro regeneration of vanilla (Vanilla planifolia) using a TIS. In vitro regenerated shoots were grown in Murashige and Skoog (MS) liquid medium with Argovit at five different concentrations (0, 25, 50, 100 and 200 mg/l) using a temporary immersion bioreactor system (RITA®). At 30 days of culture, contamination percentage was evaluated and shoot regeneration and length were used to determine the hormetic response. Analysis of macro and micronutrient contents was performed. In addition, the effect of Argovit on total phenolic content (TPC), reactive oxygen species (ROS) production, antioxidant capacity (ORAC) and lipid peroxidation (LP-MDA) was determined. Results showed that bacterial contamination was reduced at 50, 100 and 200 mg/l of Argovit. Growth stimulation was observed at 25 and 50 mg/l of Argovit, while significant inhibition was detected at 100 and 200 mg/l of Argovit. Mineral nutrient analysis revealed changes in macro and micronutrient concentrations exerted by Argovit. Moreover, the presence of Argovit induced the production of ROS and increased total phenolic content, antioxidant capacity and lipid peroxidation with a dose-dependent effect. Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNPs-induced hormesis for vanilla. Therefore, the addition of 50 mg/l of Argovit in the culture media had an antimicrobial and hormetic effect. Use of Argovit could be an efficient strategy for commercial micropropagation of vanilla and other species.


Micropropagation Nanobiotechnology Hormesis RITA® 



This work was supported by Mexican PAPIIT-UNAM No IT200114 and CONACyT No 270242 projects.

Author contributions

All authors listed have made substantial, direct and intellectual contribution to the work, and approved it for publication.


  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-urRehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  2. Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. Int Sch Sci Res Innov 9(6):551–555Google Scholar
  3. Amooaghaie R, Tabatabaei F, Ahadi AM (2015) Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses. Ecotoxicol Environ Saf 113:259–270. doi: 10.1016/j.ecoenv.2014.12.017 CrossRefPubMedGoogle Scholar
  4. AOAC (1990) Official methods of analysis of the AOA, 16th edn. Association of Official Analytical Chemists, WashingtonGoogle Scholar
  5. Arab M, Yadollahi M, Hosseini-Mazinani A, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G × N15 (hybrid of almond × peach) rootstock. J Genet Eng Biotechnol 12:103–110. doi: 10.1016/j.jgeb.2014.10.002 CrossRefGoogle Scholar
  6. Borrego B, Lorenzo G, Mota-Morales JD, Almanza-Reyes H, Mateos F, Lopez-Gil E, De la Losa N, Burmistrov VA, Pestryakov AN, Brun A, Bogdanchikova N (2016) Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine 12:1185–1192. doi: 10.1016/j.nano.2016.01.021 CrossRefPubMedGoogle Scholar
  7. Bory S, Lubinsky P, Risterucci AM, Noyer JL, Grisoni M, Duval MF, Besse P (2008) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). Am J Bot 95:805–815. doi: 10.3732/ajb.2007332 CrossRefPubMedGoogle Scholar
  8. Calabrese EJ (2008) Converging concepts: adaptive response, preconditioning, and the Yerkes–Dodson law are manifestations of hormesis. J Ageing Res Rev 7:8–20CrossRefGoogle Scholar
  9. Calabrese EJ (2013) Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. Environ Pollut 182:452–460. doi: 10.1016/j.envpol.2013.07.046 CrossRefPubMedGoogle Scholar
  10. Calabrese EJ (2016a) Preconditioning is hormesis part I: documentation, dose-response features and mechanistic foundations. Pharmacol Res. doi: 10.1016/j.phrs.2015.12.021
  11. Calabrese EJ (2016b) Preconditioning is hormesis part II: How the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks. Pharmacol Res. doi: 10.1016/j.phrs.2015.12.020
  12. Calabrese EJ, Baldwin LA (2003) Hormesis at the National Toxicology Program (NTP): evidence of hormetic dose responses in NTP doserange studies. Nonlinear Biol Toxicol Med 1:455–467Google Scholar
  13. Calabrese EJ, Mattson MP (2011) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5:25–38. doi: 10.1007/s12079-011-0119-1 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA (2010) Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol 610:285–308. doi: 10.1007/978-1-60327-029-8_17 CrossRefPubMedGoogle Scholar
  15. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147. doi: 10.1126/science.205.4411.1144 CrossRefPubMedGoogle Scholar
  16. Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanparticles on growth, morphology, photosynthesis, and antioxidant response in Oriza sativa. Photosynthetica 54(1):110–119. doi: 10.1007/s11099-015-0167-5 CrossRefGoogle Scholar
  17. Du W, Gardea-Torresdey JL, Ji R, Yin Y, Zhu J (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893. doi: 10.1021/acs.est.5b03055 CrossRefPubMedGoogle Scholar
  18. Gallage NJ, Moller BL (2015) Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo byosynthesis in the vanilla orchid. Mol Plant 8:40–57. doi: 10.1016/j.molp.2014.11.008 CrossRefPubMedGoogle Scholar
  19. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337. doi: 10.3109/17435390.2012.658094 CrossRefPubMedGoogle Scholar
  20. Greule M, Tumino L, Kronewald T, Hener U, Schleucher J, Mosandl A, Keppler F (2010) Improved rapid authentication of vanillin using δ13 C and δ2 H values. Eur Food Res Technol 231:933–941. doi: 10.1007/s00217-010-1346-z CrossRefGoogle Scholar
  21. Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551–1559. doi: 10.1371/journal.pone.0047674 CrossRefPubMedGoogle Scholar
  22. Harborne JB (1973) Nitrogen compounds. In: Harborne JB (ed) Phytochemical methods. Springer, The Netherlands, pp 166–211CrossRefGoogle Scholar
  23. Hoffmann GR (2009) A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose Response 7:1–51. doi: 10.2203/dose-response.08-023.Hoffmann CrossRefPubMedPubMedCentralGoogle Scholar
  24. Homaee MB, Ehsanpour AA (2015) Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian J Plant Physiol 20:353–359. doi: 10.1007/s40502-015-0188-x CrossRefGoogle Scholar
  25. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279. doi: 10.1385/BTER:105:1-3:269 CrossRefPubMedGoogle Scholar
  26. Hopkins WG, Huner NPA (2004) Introduction to plant physiology. Wiely, New YorkGoogle Scholar
  27. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50:4437–4444. doi: 10.1021/jf0201529 CrossRefPubMedGoogle Scholar
  28. Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chili pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell Dev Biol Plant 32:72–80. doi: 10.1007/BF02823134 CrossRefGoogle Scholar
  29. Jhanzab HM, Razzaq A, Jilani G, Rehman A, Hafeez A, Yasmeen F (2015) Silver nano-particles enhance the growth, yield and nutrient use efficiency of wheat. Int J Agron Agri Res 7:15–22Google Scholar
  30. Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880–1886. doi: 10.1002/etc.1899 CrossRefPubMedGoogle Scholar
  31. Juarez-Moreno KO, Gonzalez EB, Giron-Vazquez N, Chavez A, Mota-Morales JD, Perez-Mozqueda LL, García-García MR, Pestryakov A, Bogdanchikova N (2016) Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Human Exper Toxicol 1–18. doi: 10.1177/0960327116675206.
  32. Kjeldahl J (1883) A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366–382CrossRefGoogle Scholar
  33. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 9:37. doi: 10.1186/1472-6750-13-37 CrossRefGoogle Scholar
  34. Kumari MS, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246. doi: 10.1016/j.scitotenv.2009.06.024 CrossRefPubMedGoogle Scholar
  35. Kumari MS, Khan S, Pakrashi S, Mukherjee A, Chandrasekaran N, Hazard J (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621. doi: 10.1016/j.jhazmat.2011.03.095 CrossRefPubMedGoogle Scholar
  36. Lavicoli I, Calabrese EJ, Nascarella MA (2010) Exposure to nanoparticles and hormesis. Dose Response 8 4):501–517. doi: 10.2203/dose-response Google Scholar
  37. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499. doi: 10.1016/j.chemosphere.2011.10.013 CrossRefPubMedGoogle Scholar
  38. Lee-Espinosa HE, Murguía-González J, García-Rosas B, Córdova-Contreras AL, Laguna-Cerda A, Mijangos-Cortés JO, Barahona-Pérez LF, Iglesias-Andréu LG, Santana-Buzzy N (2008) In vitro clonal propagation of vanilla (Vanilla planifolia ‘Andrews’). Hortic Sci 43:454–458Google Scholar
  39. Li S, Zhang G, Gao W, Zhao X, Deng C, Lu L (2015) Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L.) exposed to copper and lead. Arch Biol Sci Belgrade 67(2):385–396. doi: 10.2298/ABS140910006L CrossRefGoogle Scholar
  40. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283CrossRefPubMedGoogle Scholar
  41. López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno, Mattei Y (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52. doi: 10.1016/j.scitotenv.2016.01.063 CrossRefPubMedGoogle Scholar
  42. Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171Google Scholar
  43. Luna–López A, González-Puertos VY, López-Diazguerrero NE, Königsberg M (2014) New considerations on hormetic response against oxidative stress. J Cell Commun Signal 8:323–331. doi: 10.1007/s12079-014-0248-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effect of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279. doi: 10.1016/j.chemosphere.2009.10.050 CrossRefPubMedGoogle Scholar
  45. Mahna N, Vahed SZ, Khani S (2013) Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechol 4:161. doi: 10.3389/fpls.2016.01330 CrossRefGoogle Scholar
  46. Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741. doi: 10.1007/s11356-015-5423-5 CrossRefGoogle Scholar
  47. Moradpour M, Aziz MA, Abdullah SNA (2016) Establishment of in vitro culture of rubber (Hevea brasiliensis) from field-derived explants: effective role of silver nanoparticles in reducing contamination and browning. J Nanomed Nanotechnol 7:375. doi: 10.4172/2157-7439.1000375 Google Scholar
  48. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  49. Nair PG, Chung I (2014a) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Element Res 162:342–352Google Scholar
  50. Nair PG, Chung I (2014b) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res 21:12709–12722Google Scholar
  51. Nair PG, Chung I (2015) Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant 37:1–11. doi: 10.1007/s11738-014-1719-1 CrossRefGoogle Scholar
  52. Najafi S, Jamei R (2014) Effect of silver nanoparticles and Pb (NO3)2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10:317–325Google Scholar
  53. Nascarella MA Calabrese EJ (2012) A method to evaluate hormesis in nanoparticle dose-responses. Dose Response 10:344–354. doi: 10.2203/dose-response.10-025 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Payet B, Shum CSA, Smadja J (2006) Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. J Agric Food Chem 54:7270–7276CrossRefPubMedGoogle Scholar
  55. Perkin-Elmer B (1996) Analytical methods for atomic absorption spectroscopy. The Perkin Elmer Corporation, Norwalk, CT, pp 132–145Google Scholar
  56. Podkopaev DO, Shaburova LN, Balandin GV, Kraineva OV, Labutina NV, Suvorov OA (2014) Comparative evaluation of antimicrobial activity of silver nanoparticles. Nanotechnol Rus 9:93–97CrossRefGoogle Scholar
  57. Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 45:321–332. doi: 10.1016/j.scitotenv.2013.02.059 CrossRefGoogle Scholar
  58. Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25. doi: 10.1016/j.plantsci.2013.07.012 CrossRefPubMedGoogle Scholar
  59. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi: 10.1016/j.biotechadv.2008.09.002 CrossRefPubMedGoogle Scholar
  60. Rajeshwari A, Suresh S, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6:24000–24009. doi: 10.1039/c6ra04712b CrossRefGoogle Scholar
  61. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2015a) Indirect organogenesis and assessment of somaclonal variation in plantlets of Vanilla planifolia Jacks. Plant Cell Tissue Organ Cult 123:657–664Google Scholar
  62. Ramírez-Mosqueda MA, Iglesias-Andreu LG (2016) Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cell Dev Biol Plant 52:154–160. doi: 10.1007/s11627-015-9735-4 CrossRefGoogle Scholar
  63. Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Rodríguez M, Castro-Luna AA (2015b) In vitro phytotoxicity of culture filtrates of Fusarium oxysporum f. sp.vanillae in Vanilla planifolia Jacks. Sci Hortic 197:573–578Google Scholar
  64. Ramos-Castellá A, Iglesias-Andreu LG, Bello-Bello J, Lee-Espinosa H (2014) Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell Dev Biol Plant 50:576–581CrossRefGoogle Scholar
  65. Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38:58. doi: 10.1007/s11738-016-2074-1 CrossRefGoogle Scholar
  66. Rattan SI (2006) Hormetic modulation of aging and longevity by mild heat stress. Dose Response 3:533–546CrossRefPubMedPubMedCentralGoogle Scholar
  67. Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2:55–58Google Scholar
  68. Safavi K, Esfahanizadeh M, Mortazaeinezahad DH, Dastjerd H (2011) The study of nano silver (NS) antimicrobial activity and evaluation of using ns in tissue culture media. Int Conf Life Sci Technol IPCBEE 3:159–161Google Scholar
  69. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197Google Scholar
  70. Salazar-Rojas VM, Herrera-Cabrera BE, Delgado-Alvarado A, SotoHernández M, Castillo-González F, Cobos-Peralta M (2012) Chemotypical variation in Vanilla planifolia Jack. (Orchidaceae) from the Puebla-Veracruz Totonacapan region. Genet Res Crop Evol 59:875–887CrossRefGoogle Scholar
  71. San B, Li, Hu Q, Reighard GL, Luo H (2015) Adventitious shoot regeneration from in vitro cultured leaf explants of peach rootstock Guardian® is significantly enhanced by silver thiosulfate. Plant Cell Tissue Organ Cult 120:757. doi: 10.1007/s11240-014-0645-7 CrossRefGoogle Scholar
  72. Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo-Peniche MC, López-Puc G, Barahona-Pérez F (2006) Improvement of in vitro culturing of Habanero pepper by inhibition of ethylene effects. HortScience 41:405–409Google Scholar
  73. Sarmast M, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 62:477–484. doi: 10.1556/ABiol.62.2011.4.12 CrossRefPubMedGoogle Scholar
  74. Sarsar V, Selwal KK, Selwal MK (2014) Nanosilver: potent antimicrobial agent and its biosynthesis. Afr J Biotechnol 13:546–554CrossRefGoogle Scholar
  75. SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2010) Norma Oficial Mexicana (NOM-059-ECOL-2001) de Protección especial de especies nativas de México de Flora y Fauna silvestres. Diario Oficial de la Federación, Marzo 6, pp 2–56 (in Spanish)Google Scholar
  76. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148CrossRefGoogle Scholar
  77. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233CrossRefPubMedGoogle Scholar
  78. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92Google Scholar
  79. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefPubMedGoogle Scholar
  80. Soltanloo H, Alimohammadi M, Ramezanpour SS, Bagher M, Najar B (2010) Nansilver colloid: a novel antimicrobial candidate applicable in plant tissue culture medium. Austr J Basic Appl Sci 4(10):5338–5345Google Scholar
  81. Soto-Arenas MA (1999) Filogeografía y recursos genéticos de las vainillas de México. Instituto Chinoin AC. SNIB-CONABIO proyecto No. J101, México (in Spanish)Google Scholar
  82. Soto-Arenas MA (2003) Vanilla. In: Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (eds) Genera Orchidacearum, vol 3, Orchidoideae (Part 2) Vanilloideae. Oxford University Press, Oxford, pp 321–334Google Scholar
  83. Soto-Arenas MA, Cribb P (2010) A new infrageneric classification and synopsis of the genus vanilla plum. ex Mill. (Orchidaceae: Vanillinae). Lakesteriana 9:355–398Google Scholar
  84. Sreedhar RV, Venkatachalam L, Neelwarne B (2009) Hyperhydricityrelated morphologic and biochemical changes in vanilla (Vanilla planifolia). J Plant Growth Regul 28:46–57CrossRefGoogle Scholar
  85. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi: 10.1021/es901695c CrossRefPubMedGoogle Scholar
  86. Stark M (2012) The sandpile model: optimal stress and hormesis. Dose Response 10:66–74. doi: 10.2203/dose-response.11-010.Stark CrossRefPubMedGoogle Scholar
  87. Stovbun SV, Kiselev AV, Zanin AM, Kalinina TS, Voronina TA, Mikhailov AI (2012) Effects of physicochemical forms of phenazepam and Panavir on their action at ultra-low doses. Bull Exp Biol Med 153:455–458CrossRefPubMedGoogle Scholar
  88. Tahmasbi D, Zharghami R, Vatanpour AA Chaeich M (2010) Effects of nanosilver and nitrogen biofertilizer on yield and yield components of potato microtubes. Inter J Agric Biol 13:986–990Google Scholar
  89. Taran N, Batsmanova L, Kovalenko M, Okanenko A (2016) Impact of metal nanoform colloidal solution on the adaptive potential of plants. Nanoscale Res Lett 11:89. doi: 10.1186/s11671-016-1294-z CrossRefPubMedPubMedCentralGoogle Scholar
  90. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309CrossRefPubMedGoogle Scholar
  91. Torres-González MJ, Aguirre-Medina JF, Iracheta-Donjuan L (2011) Germinación de semillas y obtención de plántulas de Vanilla planifolia Andrews en condiciones in vitro. Agroproductividad 4:3–8 (in Spanish)Google Scholar
  92. Vaiserman AM (2011) Hormesis and epigenetics: is there a link?. Ageing Res Rev 10:413–421. doi: 10.1016/j.arr.2011.01.004 PubMedGoogle Scholar
  93. Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E (2014). Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PloS One 9:e108876. doi: 10.1371/journal.pone.0108876 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wiegant FA, Prins HA, Van Wijk R (2011) Postconditioning hormesis put in perspective: an overview of experimental and clinical studies. Dose Response 9:209–224. doi: 10.2203/dose-response.10-004 CrossRefPubMedGoogle Scholar
  95. Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648. doi: 10.1007/s11356-013-1798-3 CrossRefGoogle Scholar
  96. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674. doi: 10.1371/journal.pone.0047674 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:9. doi: 10.3389/fpls.2016.00090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • J. L. Spinoso-Castillo
    • 1
  • R. A. Chavez-Santoscoy
    • 2
  • Nina Bogdanchikova
    • 3
  • J. A. Pérez-Sato
    • 1
  • V. Morales-Ramos
    • 1
  • J. J. Bello-Bello
    • 1
  1. 1.Colegio de Postgraduados-Campus CórdobaVeracruzMexico
  2. 2.Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma de Baja CaliforniaTijuanaMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations