Skip to main content

Carbon nanotubes impact on date palm in vitro cultures

An Erratum to this article was published on 13 September 2016

Abstract

Among the recent line of technological innovations, nanotechnology takes a promising position in agriculture and food production. Nanotechnology permits definite advances in agricultural research, such as reproductive science and technology. This investigation is interested in studying the in vitro effect of carbon nanotubes (CNTs) on callus, embryogenesis, embryo germination and elongation as well as rooting stage of date palm. Carbon nanotubes concentrations were investigated as 0.0, 0.05 and 0.1 mg/l. Results showed that CNTs affect all stages of micropropagation of date palm. Callus fresh weight showed the optimum value at 0.05 mg/l. In embryogenesis stage, CNTs decreased the number of embryos compared with the control while, increased number of germinated embryos and root number. Carbon nanotubes gave a significant enhancement for shoot length and leaf number in elongation stage. Similarly, it enhanced root number, root length, plantlet length and hairy roots. Chemical analysis as chlorophyll a, b, carotenoids, flavonoids, antioxidant enzymes and nutrients concentration and uptake were determined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Beutler ED, Kelly MB (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  2. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and non- functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    CAS  Article  PubMed  Google Scholar 

  3. Cottenie A, Verlo M, Kiekeus L, Velghe G, Camerlynck R (1982) Chemical analysis of plants and soils. Laboratory of Analytical and Agrochemistry State University, Ghent

    Google Scholar 

  4. Filipovic BK, Simonovic AD, Trifunovic MM, Dmitrovic SS, Savic JM, Jevremovic SB, Subotic AR (2015) Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 1: the role of antioxidant enzymes. PCTOC 121:703–719

    CAS  Article  Google Scholar 

  5. Flores D, Chacón R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5:3510–3518

    Article  Google Scholar 

  6. Fouad M, Kaji N, Jabasini M, Tokeshi M, Baba Y (2008) Nanotechnology meets plant biotechnology: carbon nanotubes deliver DNA and incorporate into the plant cell structure. Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego

    Google Scholar 

  7. Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    CAS  Article  PubMed  Google Scholar 

  8. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. doi:10.1038/nmat3890

    PubMed  Google Scholar 

  9. Hassan MM, Taha RA (2012) Callogenesis, somatic embryogenesis and regeneration of date palm Phoenix dactylifera L. cultivars affected by carbohydrate sources. Int J Agri Res 7 (5):231–242

    Article  Google Scholar 

  10. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanotechnol 12:1–10

    Google Scholar 

  11. Ibrahim AI, Hassan MM, Taha RA (2011) Morphological studies on date palm micropropagation as a response to growth retardants application. Proceedings of the 3rd International Conference of Genetics and its Application, Sharm El-Sheikh, South Sinai Gov., Egypt 291–304

  12. Ibrahim AI, Hassan MM, Taha RA (2012) Partial desiccation improves plant regeneration of date palm in vitro cultures. Wudpecker J Agri Res 1(6):208–214

    Google Scholar 

  13. Khodakovskaya MV, Dervishi E, Mahmood M, Yang X, Li Z, Fumiya W, Biris A (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    CAS  Article  PubMed  Google Scholar 

  14. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    CAS  Article  PubMed  Google Scholar 

  15. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    CAS  Article  PubMed  Google Scholar 

  16. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    CAS  Article  PubMed  Google Scholar 

  17. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    CAS  Article  PubMed  Google Scholar 

  18. Lin C, Fugetsu B, Su Y, Watari F (2009a) Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 170:578–583

    CAS  Article  PubMed  Google Scholar 

  19. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009b) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    CAS  Article  PubMed  Google Scholar 

  20. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2001:1–7

    Article  Google Scholar 

  21. Marklund SL, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469

    CAS  Article  PubMed  Google Scholar 

  22. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    CAS  Article  Google Scholar 

  23. Mustafa NS, Taha RA, Hassan SAM, Zaid NSM, Mustafa EA (2013) Overcoming phenolic accumulation of date palm in vitro culture using ὰ-Tochopherol and cold pretreatment. Middle-East J Sci Res 15 (3): 344–350

    CAS  Google Scholar 

  24. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  25. Pottino BG (1981) Methods in plant tissue culture. Dep. of Hort. Agric. College, Maryland Univ. College Park, Maryland, pp 8–29

    Google Scholar 

  26. Racuciu M, Creanga D (2006) A-OH coated magnetic nanoparticles internalize in vegetal tissue. Romanian J Phys 52:395–402

    Google Scholar 

  27. Saenkod C, Liu Z, Huang J, Gong Y (2013) Anti-oxidative biochemical properties of extracts from some Chinese and Thai rice varieties. Afr J Food Sci 7(9):300–305

    Article  Google Scholar 

  28. Samadi N, Yahyaabadi S, Rezayatmand Z (2015) Stress effects of TiO2 and NP-TiO2 on catalas enzyme and some physiological characteristics of Melissa officinalis L. Eur J Med Plant 9: 1–11

    Article  Google Scholar 

  29. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17

    CAS  Article  PubMed  Google Scholar 

  30. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: MH Siddiqui et al (ed) Nanotechnology and Plant Sciences. Springer International Publishing, Switzerland

  31. Singleton VL, Orthofer R, Lamuela- Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Article  Google Scholar 

  32. Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012) Uptake and accumulation of multi-walled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132–138

    CAS  Article  Google Scholar 

  33. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    CAS  Article  PubMed  Google Scholar 

  34. Steel RG, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. 2nd edn. McGraw-Hill Book Co., New York

    Google Scholar 

  35. Taha RA and Hassan MM (2014) Effect of low levels of salinity on development of date palm embryogenic cultures. Asian J Agri Sci 6 (2): 69–74, 2014

    Google Scholar 

  36. Taha HS, Hassan MM, El-Bahr MK (2007) Micropropagation of some Egyptian date palm dry cultivars: maturation of somatic embryos. Arab J Biotech 10:333–340

    Google Scholar 

  37. Tambe VD, Bhambar SR (2014) Estimation of total phenol, tannin, alkaloid and flavonoid in Hibiscus tiliaceus Linn. wood extracts. Res Rev J Pharm Phytochem 2(4):41–47

    CAS  Google Scholar 

  38. Tan X-m, Fugetsu B (2007) Multi-walled carbon-nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3:285–288

    CAS  Article  Google Scholar 

  39. Tan X-m, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    CAS  Article  Google Scholar 

  40. Tiwari DK, Dasgupta–Schubert N, Villasenor LM, Tripathi DH, Villegas J (2013) Interaction of carbon nanotubes with mineral nutrients for the promotion of growth of tomato seedlings. Nano Studies 7: 87–96

    Google Scholar 

  41. Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4:577–591

    CAS  Article  Google Scholar 

  42. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    CAS  Article  PubMed  Google Scholar 

  43. Tripathi S, Sarkar S (2014) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci. doi:10.1007/s13204-014-0355-9

    Google Scholar 

  44. Wang M, Chen L, Chen S, Ma Y (2012a) Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol Environ Saf 79:48–54

  45. Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012b) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:1–10

  46. Yang CM, Chang KW, Yin MH, Huang HM (1998) Methods for the determination of the chlorophylls and their derivatives. Taiwania 43(2):116–122

    Google Scholar 

  47. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  PubMed  Google Scholar 

  48. Zur I, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E, Baczek-Kwinta R, Płazek A (2014) Antioxidant activity and ROS tolerance in triticale (x Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. PCTOC 119:79–94

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rania A. Taha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11240-016-1077-3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taha, R.A., Hassan, M.M., Ibrahim, E.A. et al. Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tiss Organ Cult 127, 525–534 (2016). https://doi.org/10.1007/s11240-016-1058-6

Download citation

Keywords

  • Antioxidant enzymes
  • Carbon nanotubes
  • Date palm
  • In vitro
  • Nutrients