Skip to main content
Log in

Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Mei (Prunus mume Sieb. et Zucc.) is an important ornamental plant in China, but low temperature severely restricts its application in North China. The C-repeat binding factor/Dehydration responsive element binding factors (CBF/DREB1) pathway has important roles in plant responses to cold stress. However, knowledge on the function of CBF/DREB1 genes from Mei and its regulatory roles in freezing and other abiotic stresses is limited. Three PmhCBF genes, designated as PmhCBFa, PmhCBFb and PmhCBFc respectively, were isolated and characterized from Prunus mume ‘Huahudie’. Gene expression analysis revealed that PmhCBFa and PmhCBFb were more induced than PmhCBFc by cold stress, and other stress treatments including H2O2, Mannitol, NaCl and Abscisic Acid also induced the expressions of PmhCBFa/b/c at a relatively lower level. Compared to PmhCBFa and PmhCBFb, PmhCBFc appeared to be more triggered by H2O2 and showed broad regulation potential in all the abiotic stresses. Overexpression of PmhCBFc in Arabidopsis improved freezing and oxidative stress tolerance, and reduced the inhibition of PSII, but delayed development and flowering. The superoxide dismutase (SOD, EC 1.11.1.6) and peroxidase (POD, EC 1.11.1.7) activities were also elevated in the transgenic Arabidopsis plants during freezing-thawing cycles. Our results suggested that PmhCBFc responded to reactive oxygen species (ROS) and functioned in freezing tolerance by enhancing the capacities for ROS scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Attia H, Arnaud N, Karray N, Lachaal M (2008) Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression of Arabidopsis rosette leaves. Physiol Plant 132:293–305

    Article  CAS  PubMed  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:734–743

    Article  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Fang ZW, Zhang XH, Gao JF, Wang PK, Xu XY, Liu ZX, Shen SH, Feng BL (2015) A buckwheat (Fagopyrum esculentum) DRE-binding transcription factor gene, FeDREB1, enhances freezing and drought tolerance of transgenic Arabidopsis. Plant Mol Biol Rep 33:1510–1525

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JM, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  CAS  PubMed  Google Scholar 

  • Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Ishitani M, Zhu JK (2002) An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc Natl Acad Sci USA 99:7786–7791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Zhang JQ, Peng T, Bao MZ, Zhang JW (2014) Structural and expression analyses of three PmCBFs from Prunus mume. Biol Plant 58:247–255

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002b) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma L-F, Li Y, Chen Y, Li X-B (2015) Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene. Plant Cell Tissue Org 124:583–598

    Article  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Wakamatsu N, Jouyu H, Makita H, Akada S (2011) An extensive analysis of R2R3-MYB regulatory genes from Fagus crenata. Tree Genet Genome 7:307–321

    Article  Google Scholar 

  • Mboup M, Fischer I, Lainer H, Stephan W (2012) Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 29:3641–3652

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulieres C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  CAS  PubMed  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Kane D, Gill V, Boyd P, Burdon R (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377

    Article  PubMed  Google Scholar 

  • Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37:178

    Article  Google Scholar 

  • Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922

    Article  CAS  PubMed  Google Scholar 

  • Siddiqua M, Nassuth A (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ 34:1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen TH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao DL, Öquist G, Wingsle G (1998) Active oxygen scavengers during cold acclimation of scots pine seedlings in relation to freezing tolerance. Cryobiology 37:38–45

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tillett RL, Wheatley MD, Tattersall EA, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124

    Article  CAS  PubMed  Google Scholar 

  • von Korff M, Radovic S, Choumane W, Stamati K, Udupa SM, Grando S, Ceccarelli S, Mackay I, Powell W, Baum M, Morgante M (2009) Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J 59:14–26

    Article  Google Scholar 

  • Wan XL, Zhou Q, Wang YY, Wang WE, Bao MZ, Zhang JW (2015) Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq. front. Plant Sci 6:519

    Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-J, Xu K-Y, Tong Z-G, Wang S-H, Gao Z-H, Zhang J-Y, Zong C-W, Qiao Y-S, Zhang Z (2010) Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tissue Org 101:211–219

    Article  CAS  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao HG, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Xiao HG, Tattersall EAR, Siddiqua MK, Cramer GR, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10

    CAS  PubMed  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Tang XF, Ma NN, Wang LY, Meng QW (2011) Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco. J Plant Physiol 168:1804–1812

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wan XL, Guo C, Zhang JW, Bao MZ (2016) Identification and expression analysis of nuclear factor Y families in Prunus mume under different abiotic stresses. Biol Plant. doi:10.1007/s10535-016-0624-4

    Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JQ, Guo C, Liu GF, Li ZN, Li XM, Bao MZ (2011) Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia. Gene 473:82–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R et al (2012) The genome of Prunus mume. Nat Commun 3:1–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 31070624) and the National 863 Project of China (No. 2011AA100207). We thank all the colleagues in our laboratory for constructive discussion and technical support.

Author contributions

M. Z. B. and J. W. Z. designed research, T. P., C. G. and J. Y. conducted all the sampling, RNA extraction and cDNA synthesis. T. P., M. X. and J. Z. detected the activities of anti-oxidative enzymes and analyzed the data. T. P. also performed the remaining experiments and drafted the manuscript. J. W. Z. contributed for the discussion of the results and revision of the manuscript. All authors approved the manuscript for final submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

11240_2016_1004_MOESM2_ESM.pdf

Fig. S1 The deduced amino sequence alignment of CBF proteins from Prunus mume and Arabidopsis thaliana. The CBF sequences and their GenBank accession numbers are PmhCBFa (KU587042), PmhCBFb (KU587043), PmhCBFc (KU587044) from P. mume ‘Huahudie’ and PmCBFa (ADF43033.1), PmCBFb (ADF43034.1), PmCBFc (ADF43035.1) from P. mume ‘Xuemei’; AtDREB1B (AT4G25490.1), AtDREB1C (AT4G25470.1) and AtDREB1A (AT4G25480.1) from A. thaliana. The putative nuclear localization signal (NLS), AP2/ERF domain, DSAWR- and LWSY- motif are indicated by solid lines. (PDF 2579 kb)

11240_2016_1004_MOESM3_ESM.pdf

Fig. S2 Phylogenetic relationships of P. mume ‘Huahudie’ and CBF/DREB proteins from other plants. The proteins aligned included 16 CBF protein sequences, 3 CBFs from P. mume ‘Huahudie’ (in red box): PmhCBFa (KU587042), PmhCBFb (KU587043), PmhCBFc (KU587043); 3 CBFs from P. mume ‘Xue Mei’: PmCBFa (ADF43033.1), PmCBFb (ADF43034.1), PmCBFc (ADF43035.1); 2 CBFs from P. persica: PpDREB1 (ABR19831.1), PpCBF1 (ADU03762.1); 2CBFs from P. avium: PaCIGA (BAC20183.1), PaCIGB (BAC20184.1); 2CBFs from P. dulics: PdCBF1 (AFL48190.1), PdCBF2 (AFL48191.1); 1 CBF from P. canescens x P. cerasus, PcxPcDREB1 (ACF94686.1); 3 DREB1s from A. thaliana AtDREB1B (AT4G25490.1), AtDREB1C (AT4G25470.1) and AtDREB1A (AT4G25480.1). (PDF 190 kb)

11240_2016_1004_MOESM4_ESM.pdf

Fig. S3 PmhCBFc overexpression in transgenic Arabidopsis under normal condition. Transcript level of PmhCBFc was analyzed by qRT-PCR using AtEF1α as internal control. Error bars show the standard deviation based on three replicates. (PDF 74 kb)

11240_2016_1004_MOESM5_ESM.pdf

Fig. S4 Phenotypic evaluation of PmhCBFc overexpression Arabidopsis plants under drought and high salinity stress. a, c Effects on seed germination in response to drought stress (a) and high salinity stress (c). The average of three independent experiments is shown. b, d Effects on seedling response to drought stress (b) and high salinity stress (d). WT and transgenic plants were germinated on 1/2 MS agar plates for 5 days, then transferred to a new MS agar plate supplemented with 1.5 μM MV or 300 mM mannitol or 160 mM NaCl for 15 days. Repeated experiments showed similar tendencies. (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Guo, C., Yang, J. et al. Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tiss Organ Cult 126, 373–385 (2016). https://doi.org/10.1007/s11240-016-1004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1004-7

Keywords

Navigation