Skip to main content
Log in

Accumulation of loganin by genotypes of Palicourea rigida and related differential gene expression as determined by cDNA-SRAP

Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Cite this article


Palicourea rigida, an endangered medicinal plant from the Brazilian Cerrado, produces the iridoid glucoside loganin as an active principle. The objectives of this study were to establish a micropropagation method for the species, to evaluate loganin accumulation in different genotypes cultivated in vitro, and to perform cDNA-sequence-related amplified polymorphism (cDNA-SRAP) analysis to discriminate the genotypes. Shoot cultures were initiated from apical explants derived from 7-day-old seedlings and incubated on agar medium without growth regulators. Nodal segments were excised from established shoots and cultured on agar medium supplemented with 6-benzylaminopurine (BAP), kinetin or 2-isopentenyl adenine. Rooting experiments in vitro were conducted using agar medium supplemented with 1-naphthaleneacetic acid or indole-3-butyric acid as well as common substrates (sand, sandy soil and clay soil), while rooting experiments ex vitro were performed using sandy soil or commercial Bioplant® substrate. Multiplication of shoots in vitro was improved by the presence of 0.1 µM BAP, while rooting only occurred in clay soil. Rooting under ex vitro conditions was improved when sandy soil was employed as substrate. High-performance liquid chromatographic analysis revealed that shoots cultured in the presence of 0.1 µM kinetin exhibited maximum levels of loganin (32.6 mg/g dry weight). cDNA-SRAP analysis was efficient in discriminating seven genotypes generated from seeds collected in the Cerrado. The genotypes were clustered into five groups, four of which had similar chemical profiles while the most genetically distant group accumulated no detectable amounts of loganin and could be classified as a chemotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



2-Isopentenyl adenine


Analysis of variance




Differentially expressed genes


High-performance liquid chromatography


Indole-3-acetic acid


Indole-3-butyric acid (IBA)


Limit of detection


Limit of quantification


Murashige and Skoog


Naphthalene acetic acid (NAA)


Principal coordinates analysis


Reverse transcription-polymerase chain reaction


Signal to noise ratio


Sequence-related amplified polymorphism


Tris–borate-EDTA buffer


  • Bello de Carvalho CM, Maurmann N, Luz DI, Fett-Neto AG, Rech SB (2004) Control of development and valepotriate production by auxins in micropropagated Valeriana glechomifolia. Plant Cell Rep 23:251–255

    Article  CAS  PubMed  Google Scholar 

  • Biondo R, Soares AM, Bertoni BW, França SC, Pereira AMS (2004) Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom. Plant Cell Rep 22:549–552

    Article  CAS  PubMed  Google Scholar 

  • Biondo R, Souza AV, Bertoni BW, Soares AM, França SC, Pereira AMS (2007) Micropropagation, seed propagation and germplasm bank of Mandevilla velutina (Mart.) Woodson. Sci Agric 64:263–268

    Article  CAS  Google Scholar 

  • Contin A, van der Heijden R, Verpoorte R (1999) Accumulation of loganin and secologanin in vacuoles from suspension cultured Catharanthus roseus cells. Plant Sci 147:177–183

    Article  CAS  Google Scholar 

  • Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306

    Article  CAS  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP (2006) Aplications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurrence, synthesis, metabolism and transport. Physiol Plant 88:382–389

    Article  CAS  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042

    Google Scholar 

  • Ford YY, Bonham EC, Cameron RWF, Blake PS, Judd HL, Harrison-Murray RS (2001) Adventitious rooting: examining the role of auxin in an easy- and a difficult-to-root plant. Plant Growth Regul 36:149–159

    Article  Google Scholar 

  • Frédérich M, Choi YH, Angenot L, Harnischfeger G, Lefeber AW, Verpoorte R (2004) Metabolomic analysis of Strychnos nux-vomica, Strychnos icaja and Strychnos ignatii extracts by 1H nuclear magnetic resonance spectrometry and multivariate analysis techniques. Phytochemistry 65:1993–2001

    Article  PubMed  Google Scholar 

  • Guarim Neto G, Morais RG (2003) Recursos medicinais de espécies do Cerrado de Mato Grosso: um estudo bibliográfico. Acta Bot Bras 17:561–584

    Article  Google Scholar 

  • Huang N, Zhang YY, Xiao XH, Huang L, Wu QB, Que YX, Xu LP (2015) Identification of smut-responsive genes in sugarcane using cDNA-SRAP. Genet Mol Res 14(2):6808–6818

    Article  CAS  PubMed  Google Scholar 

  • Inácio MC, Bertoni BW, França SC, Pereira AMS (2011) In vitro conservation and low cost micropropagation of Cochlospermum regium (Mart. Ex. Scharank). J Med Plants Res 5:4999–5007

    Google Scholar 

  • Inácio MC, Moraes RM, Mendonça PC, Morel LJF, França SC, Bertoni BW, Pereira AMS (2013) Phenolic compounds influence seed dormancy of Palicourea rigida H.B.K. (Rubiaceae), a medicinal plant of the Brazilian savannah. Am J Plant Sci 4:129–133

    Article  Google Scholar 

  • Inouye H, Takeda Y, Nishimura H, Kanomi A, Okuda T, Puff C (1988) Chemotaxonomic studies of rubiaceous plants containing iridoid glycosides. Phytochemistry 27:2591–2598

    Article  CAS  Google Scholar 

  • Jiang WL, Zhang SP, Hou J, Zhu HB (2012) Effect of loganin on experimental diabetic nephropathy. Phytomedicine 19:217–222

    Article  CAS  PubMed  Google Scholar 

  • Joyce SM, Cassells AC, Jain SM (2003) Stress and aberrant phenotypes in in vitro culture. Plant Cell Tissue Organ Cult 74:103–121

    Article  CAS  Google Scholar 

  • Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27:149–154

    Article  CAS  Google Scholar 

  • Kwon SH, Kim HC, Lee SY, Jang CG (2009) Loganin improves learning and memory impairments induced by scopolamine in mice. Eur J Pharmacol 619:44–49

    Article  CAS  PubMed  Google Scholar 

  • Kwon SH, Kim JA, Hong SI, Jung YH, Kim HC, Lee SY, Jang CG (2011) Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem Int 58:533–541

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Sung SH, Kim SH, Jang YP, Oh TH, Kim YC (2009) Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice. Arch Pharm Res 32:677–683

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li HJ, Li P, Ye WC (2003) Determination of five major iridoid glucosides in Flos Lonicerae by high-performance liquid chromatography coupled with evaporative light scattering detection. J Chromatogr A 1008:167–172

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang Q, Zhang L, Xu L, Yin W (2006) HPLC study of tissue distribution of loganin in rats. Biomed Chromatogr 20:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yuan D, Zhang X, Lin Z (2013) Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J Genet 92:2

    Google Scholar 

  • Lopes S, von Poser GL, Kerber VA, Farias FM, Konrath EL, Moreno P, Sobral ME, Zuanazzi JAS, Henriques AT (2004) Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochem System Ecol 32:1187–1195

    Article  CAS  Google Scholar 

  • Maciel SC, Voltolini JA, Pedrotti EL (2002) Enraizamento ex vitro e aclimatização do porta-enxerto de macieira Marubakaido micropropagado. Rev Bras Frutic 24:289–292

    Article  Google Scholar 

  • Malosso MG, Bertoni BW, Coppede JS, França SC, Pereira AMS (2012) Micropropagation and in vitro conservation of Jacaranda decurrens Cham. J Med Plants Res 6:1147–1154

    Google Scholar 

  • Mohaddes G, Hasani Azami S, Babri S, Nikkar E, Ebrahimi H (2012) The effect of loganin on passive avoidance learning in diabetic male rats. Pharm Sci 17:219–224

    Google Scholar 

  • Moraes RM, Momm HG, Silva B, Maddox V, Easson GL, Lata H, Ferreira D (2005) Geographic information system method for assessing chemo-diversity in medicinal plants. Planta Med 71:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Morel LJF, Baratto DM, Pereira PS, Taleb-Contini SH, Momm HG, Bertoni BW, França SC, Pereira AMS (2011) Loganin production in Palicourea rigida H.B.K. (Rubiaceae) from populations native to Brazilian cerrado. J Med Plants Res 5:2559–2565

    CAS  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AKD, Cañal MJ, Centeno ML, Feito I, Fernández B (1997) Endogenous plant growth regulators in carnation tissue cultures under different conditions of ventilation. Plant Growth Regul 22:169–174

    Article  Google Scholar 

  • Oliveira TG, Pina PSS, Bertoni BW, França SC, Pereira AMS (2011) Micropropagação de Croton antisyphiliticus Mart. Cienc Rural 41:1712–1718

    Article  Google Scholar 

  • Park CH, Tanaka T, Kim JH, Cho EJ, Park JC, Shibahara N, Yokozawa T (2011) Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology 290:14–21

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Miss Bot Gard 99:214–220

    Article  Google Scholar 

  • Pereira AMS, Amui SF, Bertoni BW, Moraes RM, França SC (2003) Micropropagation of Anemopaegma arvense: conservation of an endangered medicinal plant. Planta Med 69:571–573

    Article  CAS  PubMed  Google Scholar 

  • Pereira AMS, Bertoni BW, Fonseca VS, Amarante MFC, Lopes NP, Paron ME, França SC (2005) Micropropagação e conservação de Lychnophora ericoides Mart.: uma espécie medicinal do cerrado brasileiro. Rev Fitos 1:69–72

    CAS  Google Scholar 

  • Picoli EA, Otoni WC, Figueira ML, Carolino SM, Almeida RS, Silva EA, Carvalho CR, Fontes EP (2001) Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein). Plant Sci 160:857–868

    Article  CAS  PubMed  Google Scholar 

  • Que YX, Xu LP, Lin JW, Luo J, Xu JS, Zheng J, Chen RK (2012) cDNA-SRAP and its application in differential gene expression analysis: a case study in Erianthus arundinaceum. J Biomed Biotechnol. doi:10.1155/2012/390107

    PubMed  PubMed Central  Google Scholar 

  • Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35

    Article  CAS  PubMed  Google Scholar 

  • Rosa EA (2009) Contribuição ao estudo químico das espécies vegetais Palicourea rigida e Palicourea coriacea e avaliação das atividades antioxidante, antiinflamatória e moluscicida de Palicourea rigida. Thesis, Universidade Estadual de Maringá, Maringá

  • Rosa EA, Silva BC, Silva FM, Tanaka CMA, Peralta RM, Oliveira CMA, Kato L, Ferreira HD, Silva CC (2010) Flavonoides e atividade antioxidante em Palicourea rigida Kunth, Rubiaceae. Rev Bras Farmacogn 20:484–488

    Article  Google Scholar 

  • Saher S, Fernández-García N, Piqueras A, Hellín E, Olmos E (2005) Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress? Plant Physiol Biochem 43:573–582

    Article  CAS  PubMed  Google Scholar 

  • Silva FAB, Pereira LAR, Silveira CES (2008) Micropropagation of Alibertia edulis rich. Braz Arch Biol Technol 51:1103–1114

    Article  Google Scholar 

  • Silva-Junior AA, Vizzotto VJ, Giorgi E, Macedo SG, Marques LF (1994) Plantas medicinais, caracterização e cultivo. Boletim Técnico 68. EPAGRI, Florianópolis

  • Siqueira MF (2004) A terra mais quente. Pesquisa FAPESP 96:34–37. Accessed 18 Aug 2015

  • Souza AV, Pinto JEBP, Bertolucci SKV, Corrêa RM, Costa LCB, Dyer WE (2007) In vitro propagation of Lychnophora pinaster (Asteraceae): a threatened endemic medicinal plant. HortScience 42:1665–1669

    Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira RF, Martins MVM (2000) Recursos genéticos de plantas medicinais do cerrado: uma compilação de dados. Rev Bras Plantas Med 3:13–36

    Google Scholar 

  • Yokozawa T, Kang KS, Park CH, Noh JS, Yamabe N, Shibahara N, Tanaka T (2010) Bioactive constituents of Corni Fructus: the therapeutic use of morroniside, loganin, and 7-O-galloyl-D-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov Ther 4:223–234

    CAS  PubMed  Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457

    Article  CAS  Google Scholar 

Download references


The authors wish to thank the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support for the study (Grant No. 07/58503-3).

Authors’ contribution

Study conception and design: AMSP, MV; Acquisition of data: MV, AMSP; Analysis and interpretation of data: MV, AMSP, BWB, SHTC; Drafting of manuscript: AMSP; Critical revision: BWB, SCF.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ana Maria Soares Pereira.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdevite, M., Bertoni, B.W., Contini, S.H.T. et al. Accumulation of loganin by genotypes of Palicourea rigida and related differential gene expression as determined by cDNA-SRAP. Plant Cell Tiss Organ Cult 125, 445–456 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: