Skip to main content

Heat and hydrolytic enzymes treatment improved the Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.)

Abstract

Reported Agrobacterium transformation efficiency of indica rice shoot apices varied from 0.4 to 13.8 %. In order to improve the transformation efficiency, modification of transformation protocols through heat and hydrolytic enzyme treatments on rice shoot apices were carried out. Transient expression study using reporter genes revealed that shoot apices heat treated for 3 min at 42 °C during bacterial immersion showed improved GFP (63.0 %) and GUS (42.5 %) expressions per plant as compared to standard protocol (34.0 % GFP and 36.25 % GUS). Shoot apices pre-treated with hydrolytic enzymes containing macerase, pectinase and cellulase at concentration ratio of 1:1:1 (w/v) also demonstrated high percentage of transient GFP (40.0 %) and GUS (35.0 %) expressions per plant. PCR analyses further confirmed the presence of GFP and GUS genes in the transformants. Stable expressions of GFP and GUS were also obtained in multiple shoots of regenerated shoot apices after 4 weeks of culturing in shoot proliferation media without hygromycin. In conclusion, the transformation efficiencies were improved significantly when heat (15.83 %) and hydrolytic enzymes (16.67 %) were applied as individual treatments as compared to the standard transformation method which only accounted for 5.83 %.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alam I, Sharmin SA, Naher MK, Alam MJ, Anisuzzaman M, Alam MF (2013) Elimination and detection of viruses in meristem-derived plantlets of sweetpotato as a low-cost option toward commercialization. Biotech 3(2):153–164

    Google Scholar 

  2. Arockiasamy S, Ignacimuthu S (2007) Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26:1745–1753

    CAS  Article  PubMed  Google Scholar 

  3. Badoni A, Chauhan JS (2009) Effect of growth regulators on meristem-tip development and in vitro multiplication of potato cultivar ‘Kufri Hilmalini’. Nat Sci 7(9):31–34

    Google Scholar 

  4. Bairu MW, Aremu AO, Staden J (2010) Somaclonal variation in plants: causes and detection methods. Plant Growth Reg 63(2):147–173

    Article  Google Scholar 

  5. Balsiger S, Ragaz C, Baron C, Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186(20):6824–6829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69(1):155–194

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT (2008) Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci 13(11):610–617

    CAS  Article  PubMed  Google Scholar 

  8. Chen X, Equi R, Baxter H, Berk K, Han J, Agarwal S, Zale J (2010) A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol Biofuels 3:9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Fook CWK, Lai KS, Wong MY, Maziah M (2015) Efficient regeneration and Agrobacterium mediated transformation protocol for recalcitrant indica rice (Oryza sativa L.). Emir J Food Agric 27(11):837–848

    Google Scholar 

  10. Gamborg OL (2002) Plant tissue culture biotechnology milestones. In Vitro Cell Dev Biol 38:84–92

    Article  Google Scholar 

  11. Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28(3):429–444

    CAS  Article  PubMed  Google Scholar 

  12. Hiei Y, Komari T (2006) Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 85:271–283

    CAS  Article  Google Scholar 

  13. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2(7):1614–1621

    CAS  Article  PubMed  Google Scholar 

  14. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Karakaş Ö (2011) Assessment of barley (Hordeum vulgare L.) mature embryos for Agrobacterium-mediated transformation. J Appl Biol Sci 5(1):55–58

    Google Scholar 

  16. Keegstra K (2010) Plant cell walls. Plant Physiol 154(2):483–486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar V, Sharma A, Narasimha Prasad BC, Bhaskar Gururaj H, Aswathanarayana Ravishankar G (2006) Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotechnol 9(4):350–357

    Article  Google Scholar 

  18. Lai KS, Yusoff K (2013) Production of tENDO1 in stably transformed tobacco cell cultures for mismatch detection. Plant Cell Tiss Organ Cult 114:287–294

    CAS  Article  Google Scholar 

  19. Lai KS, Yusoff K, Maziah M (2013) Functional ectodomain of the hemagglutinin neuraminidase protein is expressed in transgenic tobacco cellas as a candidate vaccine against Newcastle disease virus. Plant Cell Tiss Organ Cult 112:117–121

    CAS  Article  Google Scholar 

  20. Liu Z, Jacobs M, Schaff DA, Cullen CAMC (2001) ChvD, a chromosomally encoded ATP binding cassette transporter-homologous protein involved in regulation of virulence gene expression in Agrobacterium tumefaciens. J Bacteriol 183(11):3310–3317

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Article  Google Scholar 

  22. Padua VLM, Ferreira RP, Meneses L, Uchoa N, Margis-Pinheiro M, Mansur E (2001) Transformation of Brazillian elite indica-type rice (Oryza sativa L.) by electroporation of shoot apex explants. Plant Mol Biol Report 19:55–64

    Article  Google Scholar 

  23. Patel M, Dewey RE, Qu R (2013) Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection. Plant Cell Tiss Org Cult 114(1):19–29

    CAS  Article  Google Scholar 

  24. Staub J, Bacher K, Poetter K (1996) Sources of potential error in the application of random polymorphic DNAs in cucumber. Hort Sci 32:262–266

    Google Scholar 

  25. Su S, Stephens BB, Alexandre G, Farrand SK (2006) Lon protease of the alpha-proteobacterium Agrobacterium tumefaciens is required for normal growth, cellular morphology and full virulence. Microbiology 152(4):1197–1207

    CAS  Article  PubMed  Google Scholar 

  26. Sujatha M, Vijay S, Vasavi S, Veera Reddy P, Chander Rao S (2012) Agrobacterium-mediated transformation of cotyledons of mature seeds of multiple genotypes of sunflower (Helianthus annuus L.). Plant Cell Tiss Org Cult 110(2):275–287

    Article  Google Scholar 

  27. Tee CS, Maziah M (2005) Optimization of biolistic bombardment parameters for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter system. Plant Cell Tiss Org Cult 80:77–89

    CAS  Article  Google Scholar 

  28. Tsai Y-L, Wang M-H, Gao C, Klüsener S, Baron C, Narberhaus F, Lai E-M (2009) Small heat shock protein HspL is induced by VirB protein(s) and promotes VirB/D4-mediated DNA transfer in Agrobacterium tumefaciens. Microbiology 155(10):3270–3280

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Tsai Y-L, Chiang Y-R, Narberhaus F, Baron C, Lai E-M (2010) The small heat-shock protein HspL is a VirB8 chaperone promoting type IV secretion-mediated DNA transfer. J Biol Chem 285(26):19757–19766

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Tsai Y-L, Chiang Y-R, Wu C-F, Narberhaus F, Lai E-M (2012) One out of four: hspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence promoting VirB8 chaperone. PLoS ONE 7(11):e49685

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Vrbová M, Tejklová E, Smýkalová I, Smýkal P, Vinklárková P, Griga M, Větrovcová M (2008) The comparison of genetic transformation approaches in flax (Linum Usitatissimum L.) for improved heavy metal tolerance and accumulation. In 4th European Bioremediation Conference, 3rd Sept-6th Sept (pp. 5–8). Chania, Crete, Greece

  32. Wang S, Takahashi H, Hiroyuki K, Kawakatsu T, Fujiyama K, Takaiwa F (2013) Transgenic rice seeds accumulating hypoallergenic Birch pollen allergen Bet v 1 generate giant protein bodies. Plant Cell Physiol 1(1):1–17

    Google Scholar 

  33. Weber S, Friedt W, Landes N, Molinier J, Himber C, Rousselin P, Hahne G, Horn R (2003) Improved Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): assessment of macerating enzymes and sonication. Plant Cell Rep 21(5):475–482

    CAS  PubMed  Google Scholar 

  34. Wu Z, Zhang M, Wang L, Tu Y, Zhang J, Xie G, Zou W, Li F, Guo K, Li Q, Gao C, Peng L (2013) Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol Biofuels 6(1):183

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yong WTL, Janna OA, Maziah M (2009) Agrobacterium-mediated transformation of Melastoma malabathricum and Tibouchina semicandra with sense and antisense dihydroflavonol-4 reductase (DFR) genes. Plant Cell Tiss Org Cult 96:59–67

    CAS  Article  Google Scholar 

  36. Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype independent regeneration system for transformation of rice (Oryza sativa ssp. indica). J Plant Res 120(2):237–245

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National LRGS Food Security Programme: Enhancing Sustainable Rice Production through Innovative Research 2011–2016 for the research funding and Graduate Research Fellowship (UPM-GRF) for the scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wong Kiing Fook Clement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clement, W., Lai, K.S., Wong, M.Y. et al. Heat and hydrolytic enzymes treatment improved the Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.). Plant Cell Tiss Organ Cult 125, 183–190 (2016). https://doi.org/10.1007/s11240-015-0926-9

Download citation

Keywords

  • Agrobacterium
  • Heat
  • Hydrolytic enzymes
  • Rice
  • Shoot apices