Skip to main content

Analysis of EXO70C2 expression revealed its specific association with late stages of pollen development

Abstract

Exocyst is an octameric protein complex that mediates the tethering of secretory vesicles at the plasma membrane for exocytosis. In this study, a 1136 bp promoter fragment of exocyst subunit exo70 family protein C2 (EXO70C2) was fused with the β-glucuronidase (GUS) reporter gene and introduced into Arabidopsis thaliana via Agrobacterium tumefaciens. Detail histochemical analysis of EXO70C2-GUS expression in T3 transgenic A. thaliana lines revealed a strong GUS activity at late stages of pollen development. Strong GUS signals were visible from post meiotic pollen, mature pollen and pollen release stages. There was no detectable expression of EXO70C2-GUS during early pollen development and meiosis stages. Consistent with the GUS assay, EXO70C2 transcript profiling using real-time PCR analysis also showed high expression of EXO70C2 at these late stages of pollen development. Further RNA in situ hybridisation revealed the presence of EXO70C2 signals in pollen and as well as anther tapetum. Taken together, these results indicate that, EXO70C2 is specifically expressed in pollen and anther tapetum during the late stages of pollen development, suggesting its function in regulating essential secretory vesicles to support pollen maturation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

EXO70:

Exocyst subunit exo70 family

GUS:

β-Glucuronidase

MUG:

4-Methylumbelliferly glucuronide

MU:

4-Methylumbelliferone

SEC:

Subunit of exocyts complex

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  2. Chong YT, Gidda SK, Sanford C, Parkinson J, Mullen RT, Goring DR (2010) Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol 185:401–419

    Article  CAS  PubMed  Google Scholar 

  3. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  4. Cole RA, Synek L, Zársky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  5. Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hőfte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  6. Dobbelaere J, Barral Y (2004) Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305:393–396

    Article  CAS  PubMed  Google Scholar 

  7. Emons AM, Ketelaar T (2009) Root hairs. Plant cell monographs series, vol 12. Springer, Berlin

  8. Fendrych M, Synek L, Pecenková T, Toupaluvá H, Cole R, Drdová E, Nebesárová J, Sedinová M, Hála M, Fowler JE, Zársky V (2010) The Arabidopsis complex is involved in cytokinesis and cell plate maturation. Plant Cell 22:3053–3065

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  9. Fielding AB, Schonteich E, Matheson J, Wilson G, Yu X, Hickson GR, Srivastava S, Baldwin SA, Prekeris R, Gould GW (2005) Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J 24:3389–3399

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  10. Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87

    Article  CAS  PubMed  Google Scholar 

  11. Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66:155–178

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  12. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806

    Article  CAS  PubMed  Google Scholar 

  13. Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlug J, Hochholdinger F, Fowler EJ, Zársky V (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20:1330–1345

    PubMed Central  Article  PubMed  Google Scholar 

  14. Hsieh K, Huang AHC (2007) Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to pollen surface. Plant Cell 19:582–596

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  15. Hsieh K, Wu SS, Ratnayake C, Huang AH (2003) Tapetosomes and elaioplasts in Brassica and Arabidopsis floral tapetum. In: Murata N (ed) Advanced research on plant lipids. Springer, Dordrecht, pp 215–218

    Chapter  Google Scholar 

  16. Hsu SC, TerBush D, Abraham M, Guo W (2004) The exocyst complex in polarized exocytosis. Int Rev Cytol 233:243–265

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsen MK, Poulsen LR, Schulz A, Fleurat-lessard P, Møller A, Husted S, Schiøtt M, Amtmann A, Palmgren MG (2005) Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding Type V P-type ATPase. Genes Dev 19:2757–2769

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  18. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S (2007) Two distinct forms of M-locus protein kinase localize to the plasma membrane and intercat directly with S-locus receptor kinase to transduce self-incompatibility signalling in Brassica rapa. Plant Cell 19:3961–3973

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  20. Kim HU, Wu SS, Ratnayake C, Huang AH (2001) Brassica rapa has three gene that encode proteins associated with different neutral lipids in plastids of specific tissues. Plant Physiol 126:330–341

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  21. Kulich I, Cole R, Drdová E, Cvrcková F, Soukup A, Fowler J, Zársky V (2010) Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol 188:615–625

    Article  CAS  PubMed  Google Scholar 

  22. Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárskŷ V (2015) Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol 168:120–131

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  23. Lai KS, Yusoff K (2013) Production of tENDO1 in stably transformed tobacco cell culture for mismatch detection. Plant Cell, Tissue Organ Cult 114:287–294

    Article  CAS  Google Scholar 

  24. Lai KS, Yusoff K, Mahmood M (2012a) Heterologous expression of hemagglutinin–neuraminidase protein from Newcastle disease virus strain AF2240 in Centella asiatica. Acta Biol Crac Ser Bot 54(1):1–6

    Google Scholar 

  25. Lai KS, Yusoff K, Mahmood M (2012b) Functional ectodomain of the hemagglutinin–neuraminidase protein is expressed in transgenic tobacco cells as a candidate vaccine against Newcastle disease virus. Plant Cell, Tissue Organ Cult 112:117–121

    Article  Google Scholar 

  26. Langdale JA (1994) In situ hybridization. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 165–180

    Chapter  Google Scholar 

  27. Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky SA (2007) Novel ROP/Rac effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17:947–952

    Article  CAS  PubMed  Google Scholar 

  28. Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AM, Liu CM (2010) Expression and functional analyses of EXO70 genes in Arabidopsis implicate roles in regulating cell type-specific exocytosis. Plant Physiol 154:1819–1830

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. Luo G, Zhang J, Guo W (2014) The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol Biol Cell 25:3813–3822

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  30. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  PubMed  Google Scholar 

  31. Munson M, Novick P (2006) The exocyst defrocked, a framework of rods revealed. Nat Struc Mol Biol 13:577–581

    Article  CAS  Google Scholar 

  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  33. Murgia M, Charzynska M, Rougier M, Cresti M (1991) Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. Sex Plant Reprod 4:28–35

    Google Scholar 

  34. Onelli E, Idilli A, Moscatelli A (2015) Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. Front Plant Sci 6:51

    PubMed Central  Article  PubMed  Google Scholar 

  35. Otegui MS, Staehelin LA (2004) Electron tomographic analysis of post-meiotic cytokinesis during pollen develpment in Arabidopsis thaliana. Planta 218:501–515

    Article  CAS  PubMed  Google Scholar 

  36. Otegui MS, Verbrugghe KJ, Skop AR (2005) Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 15:404–413

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  37. Pecenková T, Halá M, Kulich I, Kocourková D, Drdová E, Fendrych M, Toupalová H, Zársky V (2011) The role for the exocyst complex subunits EXO70B2 and EXO70H1 in the plant–pathogen interaction. J Exp Bot 62:2107–2116

    PubMed Central  Article  PubMed  Google Scholar 

  38. Piffanelli P, Ross JH, Murphy DJ (1998) Biogenesis and function of the lipid structures pollen grains. Sex Plant Reprod 11:65–80

    Article  CAS  Google Scholar 

  39. Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at EXO70A1, a putative component of exocyst complex. Plant Cell 21:2655–2671

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  40. Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  41. Scott JR, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  42. Seguí-Simarro JM, Austin JRII II, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    PubMed Central  Article  PubMed  Google Scholar 

  43. Songer JA, Munson M (2009) Sec6p anchors the assembled exocyst complex at sites of secretion. Mol Biol Cell 20:973–982

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  44. Synek L, Schlager N, Eliás M, Quentin M, Hausser MT, Zársky V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  45. Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290:C11–C26

    Article  CAS  PubMed  Google Scholar 

  46. Teagen DQ, Carl JD, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 6:1189–1201

    Google Scholar 

  47. Tsuboi T, Ravier MA, Xie H, Ewart MA, Gould GW, Baldwin SA, Rutter GA (2005) Mammalian exocyts complex is required for the docking step of insulin vesicle exocytosis. J Biol Chem 280:25565–25570

    Article  CAS  PubMed  Google Scholar 

  48. VerPlank L, Li R (2005) Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 16:2529–2543

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148(3):1201–1211

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  50. Wen TJ, Hochholdinger F, Sauer M, Bruce W, Schnable PS (2005) The roothairless 1 gene of maize encodes a homolog of Sec3, which involved in polar exocytosis. Plant Physiol 138:1637–1643

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  51. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  CAS  PubMed  Google Scholar 

  52. Zársky V, Cvrcková F, Potocký M, Hála M (2009) Exocytosis and cell polarity in plants-exocyts and recycling domains. New Phytol 183:255–272

    Article  PubMed  Google Scholar 

  53. Zhang Y, Liu CM, Emons AM, Ketelaar T (2010) The plant exocyst. J Integr Plant Biol 52:138–146

    Article  CAS  PubMed  Google Scholar 

  54. Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    PubMed Central  Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is thankful to the members of Intercellular Communications Laboratory of NAIST, Japan for their technical support on this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kok Song Lai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, K.S. Analysis of EXO70C2 expression revealed its specific association with late stages of pollen development. Plant Cell Tiss Organ Cult 124, 209–215 (2016). https://doi.org/10.1007/s11240-015-0881-5

Download citation

Keywords

  • EXO70C2
  • GUS
  • Pollen
  • Promoter
  • Vesicle secretion