Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana)

Abstract

Anthocyanin biosynthesis in callus culture in vitro is strongly influenced by exogenous auxin concentrations. However, the mechanisms by which auxin regulates anthocyanin biosynthesis are largely unknown. To understand the molecular basis of this phenomenon, global gene expression was analyzed in red-fleshed apple calli treated with 1-naphthaleneacetic acid (NAA; 0.3 and 10 mg/L) and 2,4-dichlorophenoxyacetic acid (2,4-D; 0.03 and 0.6 mg/L) using RNA-seq. A total of 3070 and 2533 genes were differently expressed (log2 ratio ≥ 2 at P < 0.0001) in the 2,4-D and NAA treatments, respectively. Thereof, 937 genes were up-regulated and 902 genes were both down-regulated. Genes involved in anthocyanin and flavonoid synthesis and transport into the vacuole were generally down-regulated. Higher concentrations of 2,4-D and NAA facilitated the transport of auxin and induced the expressions of genes involved in the homeostatic feedback regulatory loop. In the auxin signaling pathway, nine Aux/IAA family genes and seven ARF family genes were up-regulated. Moreover, 298 transcription factors were differentially expressed in the NAA and 2,4-D treatments. Among them, some members of MYB, bHLH, and WD40 families that directly regulate anthocyanin and flavonoid synthesis, such as MYB75 (MdMYB10), MYB12, MYB111, MYB113, TT2, and TT8 (MdbHLH3), were down-regulated by NAA and 2,4-D. Auxin also affected gene expression in other plant hormone signaling pathways, such as the cytokinin, ethylene, and gibberellic acid pathways, which also influenced anthocyanin biosynthesis. This study provides a valuable overview of transcriptome changes and gives insight into the molecular mechanism by which auxin inhibits anthocyanin biosynthesis in red-fleshed apple calli.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

Naphthalene acetic acid

BAP:

6-Benzylaminopurine

MS:

Murashige and skoog

References

  1. Alami J, Clerivet A (2000) Cyanidin 3-glucoside accumulation in plane tree (Platanus acerifolia) cell suspension cultures. Biotech Lett 22:87–89

    CAS  Article  Google Scholar 

  2. Asano S, Ohtsubo S, Nakajima M, Kusunoki M, Kaneko K et al (2002) Production of anthocyanins by habituated cultured cells of Nyoho strawberry (Fragaria ananassa Duch.). Food Sci Tech Res 8:64–69

    CAS  Article  Google Scholar 

  3. Bartel B, Fink GR (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 268:1745–1748

    CAS  Article  PubMed  Google Scholar 

  4. Betsui F, Nishikawa NT, Shimomura K (2004) Anthocyanin production in adventitious root cultures of Raphanus sativus L. cv. Peking Koushin. Plant Biotechnol 21(5):387–391

    CAS  Article  Google Scholar 

  5. Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    CAS  Article  PubMed  Google Scholar 

  6. Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    CAS  Article  PubMed  Google Scholar 

  7. Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:1–15

    Article  Google Scholar 

  8. Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10:1009–1019

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    CAS  Article  Google Scholar 

  10. Chi BD, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9:500–504

    Google Scholar 

  11. Christians MJ, Gingerich DJ, Hansen M, Binder BM, Kieber JJ et al (2009) The BTB ubiquitin ligases ET01, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. Das PK, Shin DH, Choi SB, Yoo SD, Choi G et al (2012) Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis. Mol Cells 34:93–101

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108:47–57

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

    CAS  Article  Google Scholar 

  16. Ellis CM, Nagpal P, Young JC, Hagen G, Guifoyle TJ et al (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  Article  PubMed  Google Scholar 

  17. Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. Feild TS, Lee DW, Holbrook NM (2001) Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol 127(2):566–574

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  19. Galuszka P, Frébort I, Šebela M, Pec P (2000) Degradation of cytokinins by cytokinin oxidases in plants. Plant Growth Regul 32:315–327

    CAS  Article  Google Scholar 

  20. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    CAS  Article  PubMed  Google Scholar 

  21. Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508

    CAS  Article  PubMed  Google Scholar 

  22. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    CAS  Article  PubMed  Google Scholar 

  23. Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    CAS  Article  PubMed  Google Scholar 

  24. Hennayake CK, Takagi S, Nishimura K, Kanechi M, Uno Y et al (2006) Differential expression of anthocyanin biosynthesis genes in suspension culture cells of Rosa hybrida cv. Charleston. Plant Biotechnol 23:379–385

    CAS  Article  Google Scholar 

  25. Hirasuna TJ, Shuler ML, Lackney VK, Spanswick RW (1991) Enhanced anthocyanin production in grape cell cultures. Plant Sci 78:107–120

    CAS  Article  Google Scholar 

  26. Ilan A, Dougall DK (1994) Effects of gibberellic acid and uniconazole on the activities of some enzymes of anthocyanin biosynthesis in carrot cell cultures. J Plant Growth Regul 13:213–219

    CAS  Article  Google Scholar 

  27. Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK et al (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in arabidopsis. Plant Physiol 154:1514–1531

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Ji XH, Wang YT, Zhang R, Wu SJ, An MM et al (2015) Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss Organ Cult 120:325–337

    CAS  Article  Google Scholar 

  29. Jiang YJ, Liang G, Yang SZ, Yu DQ (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell 26:230–245

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  30. Joshipura K, Hu F, Manson J, Stampfer M, Rimm E et al (2001) The effect of fruit and vegetable intake on risk of coronary heart disease. Ann Intern Med 134:1106–1114

    CAS  Article  PubMed  Google Scholar 

  31. Kaneda M, Schuetz M, Lin BSP, Chanis C, Hamberger B et al (2011) ABC transporters coordinately expressed during lignifications of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62:2063–2077

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant Journal 37:104–114

    CAS  Article  PubMed  Google Scholar 

  33. Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M et al (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant Journal 62:549–559

    CAS  Article  PubMed  Google Scholar 

  34. Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R et al (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249

    PubMed Central  Article  PubMed  Google Scholar 

  35. Ku SJ, Park JY, Ha SB, Kim J (2009) Overexpression of IAA1 with domain II mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis. J Plant Physiol 166:548–553

    CAS  Article  PubMed  Google Scholar 

  36. LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA—amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    CAS  Article  PubMed  Google Scholar 

  37. Lei MG, Zhu CM, Liu YD, Karthikeyan AS, Bressan RA et al (2011) Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol 189:1084–1095

    CAS  Article  PubMed  Google Scholar 

  38. Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53:377–398

    CAS  Article  PubMed  Google Scholar 

  39. Li RQ, Yu C, Li YR, Lam TW, Yiu SM et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    CAS  Article  PubMed  Google Scholar 

  40. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    CAS  Article  PubMed  Google Scholar 

  41. Liu RH, Liu J, Chen B (2005) Apples prevent mammary tumors in rats. J Agric Food Chem 53(6):2341–2343

    CAS  Article  PubMed  Google Scholar 

  42. Liu YF, Wang F, Zhang HY, He H, Ma LG et al (2008) Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. Plant J 55:844–856

    CAS  Article  PubMed  Google Scholar 

  43. Liu Z, Shi MZ, Xie DY (2014) Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins. Planta 239:765–781

    CAS  Article  PubMed  Google Scholar 

  44. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272

    CAS  Article  PubMed  Google Scholar 

  45. Loreti E, Povero G, Novi G, Solfanelli C, Alpi A et al (2008) Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol 179:1004–1016

    CAS  Article  PubMed  Google Scholar 

  46. Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R (2009) Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytol 181:323–338

    Article  PubMed  Google Scholar 

  47. Maharik N, Elgengaihi S, Taha H (2009) Anthocyanin production in callus cultures of Crataegus sinaica Boiss. Int J Acad Res 1(1):30–34

    Google Scholar 

  48. Makunga NP, Staden JV, Cress WA (1997) The effect of light and 2,4-D on anthocyanin production in Oxalis reclinata callus. Plant Growth Reg 23:153–158

    CAS  Article  Google Scholar 

  49. Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem 51:3560–3563

    CAS  Article  PubMed  Google Scholar 

  50. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    CAS  Article  PubMed  Google Scholar 

  51. Meyer HJ, Staden JV (1995) The in vitro production of anthocyanin from callus cultures of Oxalis linearis. Plant Cell Tiss Org Cult 40:55–58

    CAS  Article  Google Scholar 

  52. Nishiyama Y, Yamakawa T (2004) Effect of medium composition on the production of anthocyanins by hairy root cultures of Ipomoea batatas. Plant Biotechnol 21:411–414

    CAS  Article  Google Scholar 

  53. Ozeki Y, Komamine A (1986) Effects of growth regulators on the induction of anthocyanin synthesis in carrot suspension cultures. Plant Cell Physiol 27:1361–1368

    CAS  Google Scholar 

  54. PalnP LMS, Burch L, Horgan R (1988) The effect of auxin concentration on cytokinin stability and metabolism. Planta 174:231–234

    Article  Google Scholar 

  55. Park JE, Park JY, Kim YS, Staswick PE, Jeon J et al (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    CAS  Article  PubMed  Google Scholar 

  56. Pazmiño DM, Romero-Puertas MC, Sandalio LM (2012) Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav 7:425–427

    PubMed Central  Article  PubMed  Google Scholar 

  57. Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    CAS  Article  PubMed  Google Scholar 

  58. Qin G, Gu H, Zhao Y, Ma Z, Shi G et al (2005) An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17:2693–2704

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  59. Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genom 6:60–70

    CAS  Article  Google Scholar 

  60. Rahim A, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    CAS  Article  PubMed  Google Scholar 

  61. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    CAS  Article  PubMed  Google Scholar 

  62. Rossi A, Serraino I, Dugo P, Di Paola R, Mondello L et al (2003) Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res 37(8):891–900

    CAS  Article  PubMed  Google Scholar 

  63. Sagar M, Chervin C, Roustant JP, Bouzayen M, Zouine M (2013) Under-expression of the Auxin Response Factor Sl-ARF4 improves postharvest behavior of tomato fruits. Plant Signal Behav 8:e25647

    PubMed Central  Article  Google Scholar 

  64. Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M et al (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34

    CAS  Article  PubMed  Google Scholar 

  65. Santner A, Estelle M (2010) The ubiquitin–proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  66. Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    CAS  Article  PubMed  Google Scholar 

  67. Schaefer HM, Schaefer V, Levey DJ (2004) How plant-animal interactions signal new insights in communication. Trends Ecol Evol 19(11):577

    Article  Google Scholar 

  68. Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105:881–889

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  69. Stracke R, Jahns O, Keck M, Tohge T, Niehaus K et al (2010) Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol 188:985–1000

    CAS  Article  PubMed  Google Scholar 

  70. Sudha G, Ravishankar GA (2003) Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase. Acta Physiol Plant 25:69–75

    CAS  Article  Google Scholar 

  71. Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP et al (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  72. Tantikanjana T, Nasrallah JB (2012) Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. PNAS 109:19468–19473

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  73. Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP et al (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93–107

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  74. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyaniding 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    CAS  PubMed  Google Scholar 

  75. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin response factors. Proc Natl Acad Sci USA 96:5844–5849

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  76. Viaene T, Delwiche CF, Rensing SA, Friml J (2013) Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci 18:5–10

    CAS  Article  PubMed  Google Scholar 

  77. Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  78. Wilmoth JC, Wang SC, Tiwari SB, Joshi AD, Hagen G et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    CAS  Article  PubMed  Google Scholar 

  79. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetic, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  80. Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  81. Wu BH, Cao YG, Guan L, Xin HP, Li JH et al (2014) Genome-wide transcriptional profiles of the berry skin of two red grape cultivars (vitis vinifera) in which anthocyanin synthesis is sunlight-dependent or—independent. PLoS One 9:1–13

    Google Scholar 

  82. Xie XB, Li S, Zhang RF, Zhao J, Chen YC et al (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    CAS  Article  PubMed  Google Scholar 

  83. Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19C:81–90

    Article  Google Scholar 

  84. Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153:437–443

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  85. Zhou LL, Zeng HN, Shi MZ, Xie DY (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    CAS  Article  PubMed  Google Scholar 

  86. Zhou XY, Song L, Xue HW (2013) Brassinosteroids regulate the differential growth of arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant 6:887–904

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to professor Zhang-Jun Fei for reviewing this paper. This work was supported by Special Fund for Agro-scientific Research in the Public Interest (201303093), Natl. Natural Science Foundation of China (Grant No. 31171932) and National Key Basic Research Program of China (2011CB100606).

Authors contribution

Conceived and designed the experiments: XHJ RZ XSC. Performed the experiments: XHJ RZ NW. Analyzed the data: XHJ RZ. Contributed to the writing of the manuscript: XHJ RZ LY XSC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xue-Sen Chen.

Additional information

Xiao-Hao Ji and Rui Zhang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Zhang, R., Wang, N. et al. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana). Plant Cell Tiss Organ Cult 123, 389–404 (2015). https://doi.org/10.1007/s11240-015-0843-y

Download citation

Keywords

  • Transcriptome
  • Auxin
  • Anthocyanin biosynthesis
  • Malus sieversii f. niedzwetzkyana