Skip to main content
Log in

Quantitative and structural analyses of T-DNA tandem repeats in transgenic Arabidopsis SK mutant lines

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Complex T-DNA repeat structures are a frequent outcome of Agrobacterium-mediated plant transformation and often lead to co-suppression of gene expression, even gene silencing. Thus, they are undesired in transgenic plants for commercial or research purposes and frequently need to be efficiently identified in a large transgenic plant population. Application of conventional Southern blot analysis is limited because it is laborious and time consuming. In this study, a new advancement that enables for high throughput determination of T-DNA repeat copy numbers in large scale screening of transgenic plant populations was developed by improving on the standard addition quantitative PCR method with specific reference plasmids. The plasmids contained the Arabidopsis single copy gene encoding high mobility group A and either a T-DNA direct repeat or T-DNA BAR gene. The improvement measured complex T-DNA repeat numbers quickly and accurately. Discrepancies in qPCR detected T-DNA copy number versus Southern detected T-DNA insertion number were largely a result of complex T-DNA repeats. Sequencing results revealed the existence in the repeat junctions of similar T-DNA insertion patterns commonly found in transgenic plants, including precise RB structure and LB deletion. Moreover, the end-joining nucleotides from both RB and LB in many repeat junctions were exactly at sites immediately adjacent to a homologous segment in the two borders, suggesting possible involvement of homologous recombination in the repeat formation. Our study demonstrates that this new advancement in high throughput quantification of T-DNA tandem repeats is useful for a large scale transgenic plant population analysis and in elucidating the mechanism of T-DNA tandem repeat formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Banta LM, Montenegro M (2008) Agrobacterium and plant biotechnology. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 73–148

    Chapter  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Methods for detection of single or low copy sequences in somato on Southern blots. Plant Mol Biol Rep 4:37–41

    Article  CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3:1152–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    Article  CAS  PubMed  Google Scholar 

  • Casu RE, Selivanova A, Perroux JM (2012) High-throughput assessment of transgene copy number in sugarcane using real-time quantitative PCR. Plant Cell Rep 31:167–177. doi:10.1007/s00299-011-1150-7

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Bhattacharya A, Wu C, Knoll JE, Ozias-Akins P (2013) Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR. In Vitro Cell Dev Biol-Plant 49:266–275. doi:10.1007/s11627-013-9518-8

    Article  CAS  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190. doi:10.1101/gr.849004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20:295–304

    Article  PubMed  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  PubMed  Google Scholar 

  • Deng S, Wang CY, Zhang X, Lin L (2014) Bidirectional promoter trapping T-DNA for insertional mutagenesis in Verticillium dahliae. Can J Microbiol 60:445–454. doi:10.1139/cjm-2014-0081

    Article  CAS  PubMed  Google Scholar 

  • Edmé SJ, Comstock JC, Miller JD, Tai PYP (2005) Determination of DNA content and genome size in sugarcane. J Am Soc Sugar Cane Technol 25:1–16

    Google Scholar 

  • Fan J, Liu X, Shi XX (2011) T-DNA direct repeat and 35S promoter methylation affect transgene expression but do not cause silencing in transgenic sweet orange. Plant Cell Tiss Organ Cult 107:225–232. doi:10.1007/s1124-011-9973-z

    Article  CAS  Google Scholar 

  • Gao Y, Zhao Y (2013) Epigenetic suppression of T-DNA insertion mutants in Arabidopsis. Mol Plant 6:539–545. doi:10.1093/mp/sss093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Yin X, Zhu C, Wang W, Grierson D, Xu C, Chen K (2013) Standard addition quantitative real-time PCR (SAQPCR): a novel approach for determination of transgene copy number avoiding PCR efficiency estimation. PLoS ONE 8:e53489. doi:10.1371/journal.pone.0053489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krizkova L, Hrouda M (1998) Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J 16:673–680

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2000) Transgene repeats in aspen: molecular characterisation suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol Gen Genet 264:20–28

    Article  CAS  PubMed  Google Scholar 

  • Li W, Bin T, Guo WW (2012) Estimating transgene copy number in precocious trifoliate orange by TaqMan real-time PCR. Plant Cell, Tissue Organ Cult 109:363–371. doi:10.1007/s11240-011-0101-x

    Article  Google Scholar 

  • Omar AA, Dekkers MG, Graham JH, Grosser JW (2008) Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR. Biotechnol Prog 24:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. doi:10.1038/nbt1082

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Tang LH, Mooney BA, McKay SJ, Clarke WE, Links MG, Karcz S, Regan S, Wu YY, Gruber MY, Cui D, Yu M, Parkin IA (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol 9:101. doi:10.1186/1471-2229-9-101

    Article  PubMed Central  PubMed  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572. doi:10.1105/tpc.104.02

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer K, Shiboleth YM, Li J, Tzfira T (2012) Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160:511–522. doi:10.1104/pp.112.200212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song P, Cai CQ, Skokut M, Kosegi BD, Petolino JF (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERSTM-derived transgenic maize. Plant Cell Rep 20:948–954. doi:10.1007/s00299-001-0432-x

    Article  CAS  Google Scholar 

  • Stahl R, Horvath H, Van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146–2151. doi:10.1073/pnas.032645299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154. doi:10.1016/j.copbio.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  • Vain P, James A, Worland B, Snape W (2002) Transgene behavior across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889. doi:10.1007/s00122-002-1039-5

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Stachel SE, Timmerman B, van Montagu M, Zambryski PC (1987) Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235:587–591

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Blázquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrándiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1014. doi:10.1104/pp.122.4.1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes: presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068. doi:10.1104/pp.103.027532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763. doi:10.1007/s00299-004-0881-0

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Chen SY, Duan GC (2011) Transgenic peanut (Arachis hypogaea L.) expressing the urease subunit B gene of Helicobacter pylori. Curr Microbiol 63:387–391. doi:10.1007/s00284-011-9991-4

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305. doi:10.1126/science.287.5451.303

    Article  CAS  PubMed  Google Scholar 

  • Yi JY, An G (2013) Utilization of T-DNA tagging lines in rice. J Plant Biol 56:85–90. doi:10.1007/s12374-013-0905-9

    Article  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    Article  CAS  Google Scholar 

  • Zeng FS, Zhan YG, Zhao HC, Xin Y, Qi FH, Yang CP (2010) Molecular characterization of T-DNA integration sites in transgenic birch. Trees 24:753–762. doi:10.1007/s00468-010-0445-6

    Article  CAS  Google Scholar 

  • Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y (2008) Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306. doi:10.1007/s11248-007-9101-3

    Article  CAS  PubMed  Google Scholar 

  • Ziemienowicz A, Tzfira T, Hohn B (2010) Mechanisms of T-DNA integration. In: Citovsky V, Tzfira T (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 395–440

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation in China (#31070614 and #31370687), the Doctoral Programs of Higher Education of the Ministry of Education in China (#20123418110002), as well as a Canadian Genome Prairie grant to A. Hannoufa, G. Kachatourians, and M. Gruber (Designer Oilseeds for Tomorrows Market).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Wei or Abdelali Hannoufa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Xi, YZ., Song, DP. et al. Quantitative and structural analyses of T-DNA tandem repeats in transgenic Arabidopsis SK mutant lines. Plant Cell Tiss Organ Cult 123, 183–192 (2015). https://doi.org/10.1007/s11240-015-0825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0825-0

Keywords

Navigation