Skip to main content
Log in

In vitro model to study the biological properties of humic fractions from landfill leachate and leonardite during root elongation of Alnus glutinosa L. Gaertn and Betula pendula Roth

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Humic substances (HS) are organic compounds resulting from the physical, chemical and microbiological transformations of organic residues. Our study aims to determine the main biological properties of HS comparing landfill leachate (LHS) source to a stable formulation extracted from leonardite (HHS) and using an in vitro system of root development from shoot and leaf explants of silver birch (Betula pendula Roth) and black alder (Alnus glutinosa L. Gaertn). Results showed that both explants of both species rooted closely to 100 % when cultivated in absence of HS. The incorporation of HS or their fractions into the culture medium affect root growth, mainly lateral roots formation and primary root length. Applied at low concentration (10 ppm), HS stimulated especially primary root growth. But at high concentration (100 ppm), LHS inhibited root formation of alder, while birch was more tolerant. The application of 100 ppm of HHS did not affect alder root growth but increased root growth in birch. Humic acids (HA) fractions were favorable and improved root growth while, fulvic acids (FA) and other molecules (OM) decreased significantly root growth, especially those extracted from LHS. The root inhibition expressed at high LHS concentration may be due to the presence of different toxic molecules and root growth inhibitors in OM and FA fractions and that some of them remained in the OM fraction from leonardite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HS:

Humic substances

HHS:

Leonardite HS

HHA:

Leonardite humic acids

HFA:

Leonardite fulvic acids

HOM:

Leonardite other molecules

LHS:

Leachate HS

LHA:

Leachate humic acids

LFA:

Leachate fulvic acids

LOM:

Leachate others molecules

References

  • Badis A, Ferradji FZ, Boucherit A, Fodil D, Boutoumi H (2009) Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soils (Algeria). Afr J Microbiol Res 3(13):997–1007

    CAS  Google Scholar 

  • Bajji M, Druart Ph (2012) Protocol development for in vitro assessment of cadmium tolerance in black alder and basket willow at the callus and whole plant levels. Acta Hortic 961:123–131

    Google Scholar 

  • Bialowiec A, Randerson PF (2010) Phytotoxicity of landfill leachate on willow—Salix amygdalina L. Waste Manage 30:1587–1593. doi:10.1016/j.wasman.2010.02.033

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokovha-Façanha FA, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+ATPase activity in maize root. Plant Physiol 130:1951–1957. doi:10.1104/pp.007088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canellas LP, Zandonodi DB, Busato JG, Baldotto MA, Simoes ML, Martin-Neto L, Facanho AR, Spaccini R, Piccolo A (2008) Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Sci 173(9):24–637. doi:10.1097/SS.0b013e081847e6f

    Article  Google Scholar 

  • Canellas LP, Spaccini R, Piccolo A, Dobbss LB, Okorokova-Façanha AL, Santos GA, Olivares FL, Façanha AR (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian Oxisols. Soil Sci 174:611–620. doi:10.1097/SS.0b013e3181bf1e03

    Article  CAS  Google Scholar 

  • Canellas LP, Dobbss LB, Oliveira LA, Chagas JG, Aguiar NO, Rumjanek VM, Novotny EH, Olivares FL, Spaccini R, Piccolo A (2012) Chemical properties of humic matter as relatedto induction of plant lateral roots. Eur J Soil Sci 63:315–324. doi:10.1111/j.1365-2389.2012.01439.x

    Article  CAS  Google Scholar 

  • Chen Y, De Nobili M, Aviad T (2004) Stimulatory effects of humic substances on plant growth. In: Magdoff FR, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Pres, Boca Raton, pp 103–129

    Google Scholar 

  • Dhanapal S, Sekar DS (2013) Humic acids and its role in plant tissue culture at low nutrient level. J Acad Ind Res 2(6):338–340

    CAS  Google Scholar 

  • Druart Ph (1997) Optimization of culture media for in vitro rooting of Malus domestica Borkh. cv. Compact Spartan. Biol Plant 39:67–77. doi:10.1023/A:1000309023415

    Article  Google Scholar 

  • Druart Ph (2013) Micropropagation of prunus species relevant to cherry fruit production. In: Lambardi M, Ozudogru EA, Jain SM (eds.) Protocols for micropropagation of selected economically important horticultural plants. Methods Mol Biol 994: 119–136. doi: 10.1007/978-1-62703-074-8_9

  • Druart PH, Ben Mahmoud K, Richet S, Kondakhova V (2012) Expression of regeneration competence for adventitious budding, rooting and somatic embryogenesis comparing temperate fruit tree species. Acta Hortic 961:115–122

  • Fay L, Shi X (2012) Environmental impacts of chemicals for snow and ice control: state of the knowledge. Water Air Soil Pollut 223(5):2751–2770. doi:10.1007/s11270-011-1064-6

    Article  CAS  Google Scholar 

  • Garcia-Mina J (2007) Advantages and limitations of the use of an extended polyelectrolyte model to describe the proton-binding process in macromolecular systems. Application to a poly(acrylic acid) and a humic acid. J Phys Chem B 111:4488–4494. doi:10.1021/jp0689518

    Article  CAS  PubMed  Google Scholar 

  • Gulser F, Sonmez F, Boysan S (2010) Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. J Environ Biol 31(5):873–876

    CAS  Google Scholar 

  • Hou D, He J, Lü C, Wang W, Zhang F (2014) Spatial distributions of humic substances and evaluation of sediment organic index on Lake Dalinouer, China. J Geochem. doi:10.1155/2014/502597

    Google Scholar 

  • Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, Aguiar NO, Canellas LP (2012) Root growth promotion by humic acids from compostedand non-composted urban organic wastes. Plant Soil 353:209–220. doi:10.1007/s11104-011-1024-3

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo W, Chan GYS (2006) Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chem Eng J 125(1):35–57. doi:10.1016/j.cej.2006.07.006

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Logoteta B, Panuccio MR (2010) Carboxyl and phenolic humic fractions alter the root morphology in Arabidopsis thaliana seedlings. Fresenius Environ Bull 19(2):3146–3159

    CAS  Google Scholar 

  • Muscolo A, Sidari M, Nardi S (2013) Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J Geochem Explor 129:57–63. doi:10.1016/j.gexplo.2012.10.012

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34(11):1527–1536. doi:10.1016/S0038-0717(02)00174-8

    Article  CAS  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 305–339

    Chapter  Google Scholar 

  • Piccolo A (2002) The Supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134. doi:10.1016/S0065-2113(02)75003-7

  • Pizzeghello D, Francioso O, Ertani A, Muscolo A, Nardi S (2013) Isopentenyladenosine and cytokinin-like activity of different humic substances. J Geochem Explor 129:70–75. doi:10.1016/j.gexplo.2012.10.007

    Article  CAS  Google Scholar 

  • Rodriguez J, Castrillon L, Marañone Sastre H, Fernandez E (2004) Removal of non-biodegradable organic matter from landfill leachates by adsorption. Wat Res 38:3297–3303. doi:10.1016/j.watres.2004.04.032

    Article  CAS  Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A Meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron 75:37–89. doi:10.1016/B978-0-12-800138-7.00002-4

  • Sang N, Han M, Li GK, Huang M (2010) Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Manage 30:856–862. doi:10.1016/j.wasman.2010.01.023

    Article  CAS  Google Scholar 

  • Siani S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757. doi:10.1007/s00299-013-1430-5

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus Chemistry. Genesis, composition, reactions, 2nd edn. Wiley, New York, p 496

  • Sze H, Li X, Palmgren MG (1999) Energization on plant cell membranes by H+Pumping ATPases: regulation and biosyntesis. Plant Cell 11(4):677–689. doi:10.1105/tpc.11.4.677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tahiri A, Destain J, Druart Ph, Thonart Ph (2014) Propriétés physico-chimiques et biologiques des substances humiques en relation avec le développement végétal. Biotechnol Agron Soc Environ 18(3): 336–345. http://popups.ulg.ac.be/1780-4507/index.php?id=11534

  • Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 53(7):737–744. doi:10.1016/S0045-6535(03)00513-7

    Article  CAS  PubMed  Google Scholar 

  • Thonart Ph, Steyer E, Drion R, Hiligsmann S (1998) La gestion biologique d’une décharge. Tribune de l’Eau 590(591):3–12

    Google Scholar 

  • Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S (2010) Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol 12:604–614. doi:10.1111/j.1438-8677.2009.00248.x

    CAS  PubMed  Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: a review. Environ Chem Lett 4(1):51–61. doi:10.1007/s10311-005-0016-z

    Article  CAS  Google Scholar 

  • Xiaoli C, Shimaoka T, Qiang G, Youcai Z (2008) Characterization of humic and fulvic acids extracted from landfill by elemental composition,13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Manage 28:896–903. doi:10.1016/j.wasman.2007.02.004

    Article  Google Scholar 

  • Young CC, Chen LF (1997) Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soil 195:143–149. doi:10.1023/a:1004247302388

    Article  CAS  Google Scholar 

  • Zhao R, Novak JT, Goldsmith CD (2012) Evaluation of on-site biological treatment for landfill leachates and its impact: a size distribution study. Water Res 46(12):3837–3848. doi:10.1016/j.watres.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  • Zupančič MJ, Pajk N, Zupanc V, Zupančič M (2010) Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Manage 30:1032–1042. doi:10.1016/j.wasman.2010.02.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks TRADECORP Company to supply its formulation “Humifirst” and Van Gansewinkel Groep (Cour-au-Bois landfill) for providing the leachate to achieve our test. In addition, we thanks Annik Salvé, Sophie Richet and Mohammed Bajji for their technical assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Tahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahiri, A., Destain, J., Thonart, P. et al. In vitro model to study the biological properties of humic fractions from landfill leachate and leonardite during root elongation of Alnus glutinosa L. Gaertn and Betula pendula Roth. Plant Cell Tiss Organ Cult 122, 739–749 (2015). https://doi.org/10.1007/s11240-015-0807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0807-2

Keywords

Navigation