Skip to main content
Log in

Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

1-Pyrroline-5-carboxylate synthetase (P5CS) is a key enzyme of proline biosynthesis in plants. The Nicotiana plumbaginifolia mutant RNa was previously reported as salt tolerant, overproducing proline, and having reduced feedback inhibition of proline biosynthesis. A mutation in an RNa P5CS gene changing a conserved glutamate codon at position 155 into a glycine codon (E155G) is a possible explanation for the phenotypes in the RNa mutant. In this work, the E155G mutation was introduced in the Arabidopsis thaliana P5CS1 cDNA driven by the CaMV 35S promoter and expressed in wild type N. plumbaginifolia (P2) and in the RNa mutant. The E155G substitution decreased feedback inhibition of P5CS by proline in transgenic lines. Under normal conditions, proline content and growth were comparable in the transgenic lines and the P2 control. In contrast, when plants were exposed to salt stress, proline levels in all transgenic lines increased compared to P2. Growth rate was also less affected by salt treatment in the transgenic lines than in the controls. Semi-quantitative RT-PCR showed higher p35S-P5CS transgene derived mRNA levels in plants submitted to salt stress than in non-stressed plants. To evaluate the role of the CaMV 35S promoter during salt stress, N. plumbaginifolia lines harbouring a p35S-GUS cassette were investigated. Increased GUS activities were observed when submitting leaf discs of transformants to salt stress compared to normal conditions. This result can partly explain increased proline content in the p35S-P5CS transgenic plants when exposed to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Armengaud P, Thiery L, Buhot N, Grenier-de March D, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9:1685–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469

    Article  CAS  PubMed  Google Scholar 

  • Cooke DE, Webb KJ (1997) Stability of CaMV 35S-gus gene expression in (Bird’s foot trefoil) hairy root cultures under different growth conditions. Plant Cell Tissue Organ Cult 47:163–168

    Article  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20:347–356

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Delauney AJ, Hu C-AA, Kavi Kishor PB, Verma DPS (1993) Cloning of ornithine δ-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    CAS  PubMed  Google Scholar 

  • Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Stauffacher C, Bressan RA, Csonka LN (2003) Identification of regions of the tomato γ-glutamyl kinase that are involved in allosteric regulation by proline. J Biol Chem 278:14203–14210

    Article  CAS  PubMed  Google Scholar 

  • Funck D, Stadelhofer B, Koch W (2008) Ornithine-δ-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Funck D, Winter G, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12:191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goossens A, Dillen W, De Clercq J, Van Montagu M, Angenon G (1999) The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants. Plant Physiol 120:1095–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu C-AA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jury WA, Vaux H Jr (2005) The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci USA 102:15715–15720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue Organ Cult 107:383–395

    Article  CAS  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao Sreenath, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Mattioli R, Biancucci M, Lonoce C, Costantino P, Tovato M (2012) Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol 12:236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parre E, de Virville J, Cochet F, Leprince A-S, Richard L, Lefebvre-De Vos, D, Ghars MA, Bordenave M, Zachowski A, Savouré A (2010) A new method for accurately measuring Δ1-pyrroline-5-carboxylate synthetase activity. Methods Mol Biol 639:333–340

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    CAS  PubMed  Google Scholar 

  • Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J (2010) Molecular mechanisms modulating glutamate kinase activity. Identification of the proline feedback inhibitor binding site. J Mol Biol 404:890–901

    Article  PubMed  Google Scholar 

  • Qin X-F, Holuigue L, Horvath DM, Chua N-H (1994) Immediate early transcription activation by salicylic acid via the Cauliflower Mosaic Virus as-1 element. Plant Cell 6:863–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roosens NH (1999) Proline biosynthesis related to salt stress in higher plants. Ph.D. thesis. Vrije Universiteit Brussel (VUB), Brussels, Belgium

  • Roosens NHCJ, Thu TT, Iskander HM, Jacobs M (1998) Isolation of ornithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roosens NH, Willem R, Li Y, Verbruggen I, Biesemans M, Jacobs M (1999) Proline metabolism in the wild-type and in a salt-tolerance mutant of Nicotiana plumbaginifolia studied by 13C-nuclear magnetic resonance imaging. Plant Physiol 121:1281–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roosens NH, Al Bitar F, Loenders K, Angenon G, Jacobs M (2002) Overexpression of ornithine-δ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breeding 9:73–80

    Article  CAS  Google Scholar 

  • Rushlow KE, Deutch AH, Smith CJ (1985) Identification of a mutation that relieves gamma-glutamyl kinase from allosteric feedback inhibition by proline. Gene 39:109–112

    Article  CAS  PubMed  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    Article  CAS  Google Scholar 

  • Schnurr JA, Guerra DJ (2000) The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep 19:279–282

    Article  CAS  Google Scholar 

  • Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sleator RD, Gahan CGM, Hill C (2001) Mutations in the listerial proB gene leading to proline overproduction: effects on salt tolerance and murine infection. Appl Environ Microbiol 67:4560–4565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MK, McComb JA (1981) Use of callus culture to detect NaCl tolerance in cultivars of three species of pasture legumes. Aust J Plant Physiol 8:437–442

    Article  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Sumaryati S, Negrutiu I, Jacobs M (1992) Characterization and regeneration of salt-and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor Appl Genet 83:613–619

    Article  CAS  PubMed  Google Scholar 

  • Surekha Ch, Nirmala Kumari K, Aruna LV, Suneetha G, Arundhati A, Kavi Kishor PB (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cult 116:27–36

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Székely G, Ábrahám E, Cséplő A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325–346

    Article  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Verdoy D, De la Peña TC, Redondo FJ, Lucas MM, Pueyo JJ (2006) Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ 29:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H, Xu N, Zhong M, Qiao Z, Tang Y, Song R (2014) Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. Plant Cell 26:2582–2600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang C, Miao Z-H, Lam E (1996) Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol 32:415–426

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-S, Lu Q, Verma DPS (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Ahmed thanks the Ministry of Higher Education of Egypt for financial support. The authors gratefully thank Prof. Jean-Pierre Hernalsteens (Vrije Universiteit Brussel, Belgium) for discussions during writing the manuscript and Martine Claeys for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Angenon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.A.M., Roosens, N., Dewaele, E. et al. Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia . Plant Cell Tiss Organ Cult 122, 383–393 (2015). https://doi.org/10.1007/s11240-015-0776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0776-5

Keywords

Navigation