Skip to main content

Advertisement

Log in

Reference gene selection in Artemisia annua L., a plant species producing anti-malarial artemisinin

Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The selection and validation of reference genes are essential for gene expression studies by real-time quantitative PCR. The genetic map of Artemisia annua L., a Chinese medicinal plant species producing anti-malarial artemisinin, has been reported. However, few reference genes of A. annua have been estimated for real-time quantitative PCR until now. In this study, ten putative housekeeping genes, including ACT, UBQ, TUB, 18S rRNA, EF1α, CYP, RPL13D, TUA, RPII and GAPDH, were chosen for identifying expression stability using geNorm and NormFinder software tools in 11 different sample pools, containing those from different plant organs and from plants treated with phytohormones and abiotic stresses. As expected, the variation in expression stability of the ten candidate reference genes tested in this study suggested there was no single reference gene that can be used for all experimental conditions in A. annua. The combination of RPII & EF1α was the most stably expressed reference genes for different organs. Under phytohormone treatment, the combination of EF1α & TUB was recommended as internal reference genes used for investigating target gene expression levels. In addition, the combination of ACT & EF1α was suitably chosen for normalization in temperature-shocked samples. In order to further verify the reliability of the experimental results, RPII & EF1α were used in combination as reference genes to examine the expression levels of ADS gene in different organs. Meanwhile, the expression levels of ADS, CYP71AV1 and DBR2 were tested by qPCR normalized with the combination of EF1α & TUB in MeJA treatment samples. Our study will benefit future research on the expression of genes related to artemisinin biosynthesis under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Borowski JM, Galli V, da Silva Messias R, Perin EC, Buss JH, Dos Anjos ESSD, Rombaldi CV (2014) Selection of candidate reference genes for real-time PCR studies in lettuce under abiotic stresses. Planta 239:1187–1200

    CAS  PubMed  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or “maintenance,” genes focus on “A compendium of gene expression in normal human tissues”. Physiol Genomics 7:95–96

    CAS  PubMed  Google Scholar 

  • Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G (2011) Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. Plant biol 13:51–58

    Article  CAS  PubMed  Google Scholar 

  • Chandna R, Augustine R, Bisht NC (2012) Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS one 7:e36918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng DF, Zhang ZL, He XF, Liang GW (2013) Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS one 8:e57718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coito JL, Rocheta M, Carvalho L, Amâncio S (2012) Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. BMC Res Notes 5:220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan CJ, Ma JM, Guo QR, Li XT, Wang H, Lu MZ (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS one 8:e56573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez P, Di Rienzo JA, Moschen S, Dosio GA, Aguirrezabal LA, Hopp HE, Paniego N, Heinz RA (2011) Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep 30:63–74

    Article  CAS  PubMed  Google Scholar 

  • Gu CS, Chen SM, Liu ZL, Shan H, Luo HL, Guan ZY, Chen FD (2011) Reference gene selection for quantitative real-time PCR in Chrysanthemum subjected to biotic and abiotic stress. Mol Biotechnol 49:192–197

    Article  CAS  PubMed  Google Scholar 

  • Guenin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618

    Article  CAS  PubMed  Google Scholar 

  • Han B, Yang Z, Samma MK, Wang R, Shen WB (2013) Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis. Biometals 26:403–413

    Article  CAS  PubMed  Google Scholar 

  • Jing F, Zhang L, Li MY, Tang YL, Wang YL, Wang YY, Wang Q, Pan QF, Wang GF, Tang KX (2009) Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64:319–323

    Article  CAS  Google Scholar 

  • Kim SK, You YN, Park JC, Joung Y, Kim BG, Ahn JC, Cho HS (2012) The rice thylakoid lumenal cyclophilin OsCYP20-2 confers enhanced environmental stress tolerance in tobacco and Arabidopsis. Plant Cell Rep 31:417–426

    Article  CAS  PubMed  Google Scholar 

  • Kjaer A, Verstappen F, Bouwmeester H, Ivarsen E, Frette X, Christensen LP, Grevsen K, Jensen M (2013) Artemisinin production and precursor ratio in full grown Artemisia annua L. plants subjected to external stress. Planta 237:955–966

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Muthamilarasan M, Prasad M (2013) Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tissue Organ Cult 115:13–22

    Article  CAS  Google Scholar 

  • Lee JM, Roche JR, Donaghy DJ, Thrush A, Sathish P (2010) Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol Biol 11:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu X, Jiang WM, Zhang L, Zhang FY, Shen Q, Wang T, Chen YF, Wu SY, Lv ZY, Gao ED, Qiu B, Tang KX (2012) Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments. Mol Biol Rep 39:9521–9527

    Article  CAS  PubMed  Google Scholar 

  • Maes L, Van Nieuwerburgh FC, Zhang Y, Reed DW, Pollier J, Vande Casteele SR, Inze D, Covello PS, Deforce DL, Goossens A (2011) Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytol 189:176–189

    Article  CAS  PubMed  Google Scholar 

  • Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A (2012) Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol 169:807–815

    Article  CAS  PubMed  Google Scholar 

  • Maroniche GA, Sagadín M, Mongelli VC, Truol GA, del Vas M (2011) Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol J 8:308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Meza-Zepeda LA, Baudo MM, Palva ET, Heino P (1998) Isolation and characterization of a cDNA corresponding to a stress-activated cyclophilin gene in Solanum commersonii. J Exp Bot 49:1451–1452

    CAS  Google Scholar 

  • Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146:855–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Obrero A, Die JV, Roman B, Gomez P, Nadal S, Gonzalez-Verdejo CI (2011) Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agric Food Chem 59:5402–5411

    Article  CAS  PubMed  Google Scholar 

  • Olofsson L, Engstrom A, Lundgren A, Brodelius PE (2011) Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biol 11:45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Picaud S, Olofsson L, Brodelius M, Brodelius PE (2005) Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Arch Biochem Biophys 436:215–226

    Article  CAS  PubMed  Google Scholar 

  • Pu GB, Ma DM, Wang H, Ye HC, Liu BY (2013) Expression and Localization of Amorpha-4,11-diene Synthase in Artemisia annua L. Plant Mol Biol Rep 31:32–37

    Article  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schramek N, Wang H, Romisch-Margl W, Keil B, Radykewicz T, Winzenhorlein B, Beerhues L, Bacher A, Rohdich F, Gershenzon J, Liu B, Eisenreich W (2009) Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179–187

    Article  PubMed  Google Scholar 

  • Shen Q, Chen YF, Wang T, Wu SY, Lu X, Zhang L, Zhang FY, Jiang WM, Wang GF, Tang KX (2012) Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genet Mol Res 11:3298–3309

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    CAS  PubMed  Google Scholar 

  • Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66:57–62

    Article  CAS  PubMed  Google Scholar 

  • Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465

    Article  CAS  PubMed  Google Scholar 

  • Wan HJ, Zhao ZG, Qian CT, Sui YH, Malik AA, Chen JF (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, Ma CF, Li ZQ, MaQ L, Wang H, Ye HC, Xu GW, Liu BY (2010) Effects of exogenous methyl jasmonate on artemisinin biosynthesis and secondary metabolites in Artemisia annua L. Ind Crops Prod 31:214–218

    Article  Google Scholar 

  • Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE (2013a) Studies on the expression of sesquiterpene synthases using promoter-beta-glucuronidase fusions in transgenic Artemisia annua L. PLoS one 8:e80643

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang HH, Han J, Kanagarajan S, Lundgren A, Brodelius PE (2013b) Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion. Plant Mol Biol 81:119–138

    Article  CAS  PubMed  Google Scholar 

  • Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KH, Reed DW (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10:173–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei S (2010) Methyl jasmonic acid induced expression pattern of terpenoid indole alkaloid pathway genes in Catharanthus roseus seedlings. Plant Growth Regul 61(3):243–251

    Article  CAS  Google Scholar 

  • Wei LB, Miao HB, Zhao RH, Han XH, Zhang TD, Zhang HY (2013) Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta 237(3):873–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang LE, Zeng LX, Yuan Y, Chen M, Wang F, Liu XQ, Zeng LJ, Lan XZ, Liao ZH (2012) Enhancement of artemisinin biosynthesis by overexpressing dxr, cyp71av1 and cpr in the plants of Artemisia annua L. Plant Omics 5:503

    CAS  Google Scholar 

  • Yang RY, Feng LL, Yang XQ, Yin LL, Xu XL, Zeng QP (2008) Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med 74:1510–1516

    Article  CAS  PubMed  Google Scholar 

  • Yeap WC, Loo JM, Wong YC, Kulaveerasingam H (2014) Evaluation of suitable reference genes for qRT-PCR gene expression normalization in reproductive, vegetative tissues and during fruit development in oil palm. Plant Cell Tissue Organ Cult 116:55–66

    Article  CAS  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang YS, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (2008) The molecular cloning of artemisinic aldehyde Delta 11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. J Biol Chem 283:21501–21508

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSFC project (31070266; 31200223), the Program for New Century Excellent Talents in University (NCET-12-0930), the National 863 Hi-Tech Plans (2011AA100605; 2011AA100607), the Fundamental Research Funds for the Central Universities (XDJK2013A024; XDJK2011C017) and the Fundamental and Frontier Research Project of Chongqing (cstc2014jcyjA10005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Liao.

Additional information

Wanhong Liu and Tengfei Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhao, T., Wang, H. et al. Reference gene selection in Artemisia annua L., a plant species producing anti-malarial artemisinin. Plant Cell Tiss Organ Cult 121, 141–152 (2015). https://doi.org/10.1007/s11240-014-0690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0690-2

Keywords

Navigation