Skip to main content
Log in

Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.)

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

An Erratum to this article was published on 29 January 2015

Abstract

Cotton (Gossypium spp.) is an economically very important fiber yielding crop, which is grown almost in sixty-five countries throughout the world. Like other crops, cotton also suffers from major biotic and abiotic stresses. In fact, the losses due to insect pests in cotton are enormous compared to other crops, thereby reducing the actual economic potential. It is a well-known fact that more than half of the total pesticide consumption across the world is utilized on controlling insect pests in this crop. Though conventional breeding and integrated pest management practices have resulted in improving/developing fiber quality, heat tolerance, CMS lines and yield, much success has not been reported with respect to biotic and abiotic stresses, especially insect pests due to the non-availability of genes conferring resistance within a crossable gene pool. Thus, genetic engineering has become an inevitable tool in finding solutions to these problems and transfer of alien genes into commercially important cotton varieties in the last two decades. In fact ~81 % of cotton grown throughout the world is genetically modified. Despite these achievements, several limitations still exist in achieving cotton transformation. In this review, we discuss the status of different regeneration and transformation methods in cotton along with the major factors that exert influence in developing cotton transgenics, besides the chronological progress made in tissue culture and cotton transformation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2iP:

N 6-[2-Isopentyl] adenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

AgNO3 :

Silver nitrate

BAP:

Benzyl amino purine

cry1Ab :

Crystalline protein 1Ab

cry1Ac :

Crystalline protein 1Ac

DPA:

Days post anthesis

GA3 :

Gibberellic acid 3

KIN:

Kinetin

NAA:

α-Naphthalene acetic acid

TDZ:

Thiadiazuron

References

  • Abdellatef E, Khalafalla MM (2007) Adventitious shoot and plantlet formation in medium staple cotton cultivar (Gossypium hirsutum L. cv. Barac [67] B). Int J Agric Biol 9:913–916

    CAS  Google Scholar 

  • Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE (2014) Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Comm. doi:10.1038/ncomms4062

    Google Scholar 

  • Agrawal DC, Banerjee AK, Kolala RR, Dhage AB, Kulkarni WV, Nalawade SM, Hazra S, Krishnamurthy KV (1997) In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 16:647–652

    CAS  Google Scholar 

  • Allen RD (2010) Opportunities for engineering abiotic stresses. In: Zher UB (ed) Biotechnology advances in agriculture and forestry, 65th edn. Springer, Berlin, pp 127–148

    Google Scholar 

  • Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2010) Cotton transgenics with antisense AC1 gene for resistance against cotton leaf curl virus. Electron J Plant Breed 1(4):360–369

    Google Scholar 

  • Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101(3):300–307

    CAS  Google Scholar 

  • Aragão FJL, Vianna GR, Carvalheira SBRC, Rech EL (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci 168:1227–1233

    Google Scholar 

  • Arshad M, Zafar Y, Asad S (2013) Silicon carbide whisker-mediated transformation. In: Zhang Baohong (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 79–91. doi:10.1007/978-1-62703-212-4_7

    Google Scholar 

  • Asad S, Mukhtar Z, Nazir F, Hashmi J, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    CAS  PubMed  Google Scholar 

  • Aslam M, Ashfaq M, Saeed T, Ul Allah S, Zafar Y (2010) In vitro response of cotton (Gossypium hirsutum L.) from apical meristem cultures. American-Eurasian J Agric Environ Sci 7(1):07–11

    CAS  Google Scholar 

  • Aydin Y, Ipekci Z, Talas-Ogras T, Zehir H, Bajrovic K, Gozukirmizi N (2004) High frequency somatic embryogenesis in cotton. Biol Plant 48(4):491–495

    Google Scholar 

  • Aydin Y, Talas-Ogras T, Ipekci Z, Gozukirmizi N (2006) Effects of brassinosteroid on cotton regeneration via somatic embryogenesis. Biol Bratisl 61(3):289–293

    CAS  Google Scholar 

  • Bai J, Wu F, Mao Y, He Y (2013) In planta transformation of Brassica rapa and B. napus via vernalization-infiltration methods. Protoc Exch. doi:10.1038/protex.2013.067

  • Banerjee AK, Agarwal DC, Nalawade SM, Hazra S (2003) Multipleshoot induction and plant regeneration from embryo axes of six cultivars of Gossypium hirsutum. Biol Plant 47(3):433–436

    Google Scholar 

  • Barampuram S, Allen G, Krasnyanski S (2014) Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue Organ Cult 118:179–185

    CAS  Google Scholar 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649. doi:10.1007/BF00226910

    CAS  PubMed  Google Scholar 

  • Bibi N, Fan K, Yuan S, Ni M, Ahmad MI, Malik W, Wang X (2013) An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Aust J Crop Sci 7(11):1714–1722

    Google Scholar 

  • Chakravarthy VSK (2013) Rapid production of multiple shoots from cotyledonary node explants of an elite cotton (Gossypium hirsutum L.) variety. Res Plant Biol 3(5):6–13

    Google Scholar 

  • Chen TZ, Wu S, Zhao J, Guo WZ, Zhang TZ (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555. doi:10.1007/s10529-009-0179-y

    CAS  Google Scholar 

  • Chen Y, Rivilin A, lange A, Ye X, Vaghchhipawala Z, Eisinger E, Dersch E, Paris M, Martinell B, Wan Y (2013) High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). Plant Cell Rep. doi:10.1007/s00299-013-1519-x

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5:1494–1495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daud MK, Variath MT, Ali S, Jamil H, Khan MT, Shafi M, Shuijin Z (2009) Genetic transformation of Bar gene and it inheritance and segregation behavior in the resultant transgenic cotton germplasm (BR001). Pak J Bot 41(5):2167–2178

    CAS  Google Scholar 

  • Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89–93

    CAS  Google Scholar 

  • Divya K, Swathi AT, Jami SK, Kirti PB (2008) Efficient regeneration from hypocotyls explants in three cotton cultivars. Biol Plant 52(2):201–208

    CAS  Google Scholar 

  • Divya K, Jami SK, Kirti PB (2010) Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol 73:293–308. doi:10.1007/s11103-010-9615-6

    CAS  PubMed  Google Scholar 

  • Dutt Y, Wang XD, Zhu YZ, Li YY (2004) Breeding for high yield and fibre quality in colored cotton. Plant Breed 123:145–151

    Google Scholar 

  • Eapen Susan (2011) Pollen grains as a target for introduction of foreign genes into plants: an assessment. Physiol Mol Biol Plants 17(1):1–8

    PubMed Central  PubMed  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    CAS  PubMed  Google Scholar 

  • Finer JJ (1988) Plant regeneration from somatic embryogenic suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Rep 7:399–402

    CAS  PubMed  Google Scholar 

  • Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589

    CAS  PubMed  Google Scholar 

  • Finer JJ, Smith RH (1984) Initiation of callus and somatic embryos fro explants of mature cotton (Gossypium klotzschianum Anderss). Plant Cell Rep 3:41–43

    CAS  PubMed  Google Scholar 

  • Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cell Dev Biol 299:166–173

  • Firoozabady E, DeBoer D, Merlo D, Halk E, Amerson L, Rashka K, Murray E (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116

    CAS  PubMed  Google Scholar 

  • Fischer C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669

    CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    CAS  PubMed  Google Scholar 

  • Ganesan M, Jayabalan N (2005) Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures. Ind J Exp Biol 43:921–925

    CAS  Google Scholar 

  • Ganesan M, Bhanumathi P, Kumari GK, Lakshmi Prabha A, Song PS, Jayabalan N (2009) Transgenic cotton (Gossypiumhirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5(2):63–74

    CAS  Google Scholar 

  • Gawel NJ, Robacker CD (1990) Somatic embryogenesis in two Gossypium hirsutum genotypes on semi-solid versus liquid proliferation media. Plant Cell, Tissue Organ Cult 23:201–204

    Google Scholar 

  • Gould J, Banister S, Hasegawa O, Fahima M, Smith RH (1991) Regeneration of Gossypium hirsutum and Gossypium barbadense from shoot apex tissues for transformation. Plant Cell Rep 10:12–16

    CAS  PubMed  Google Scholar 

  • Gounaris Y, Galanopoulou S, Galanopoulos N et al (2005) Pollen-mediated genetic transformation of cotton with the Arabidopsis thaliana hmgr cDNA using the particle gun. J Food Agric Environ 3(2):157–160

    CAS  Google Scholar 

  • Graves ACF, Goldman SL (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7(1):43–50

    CAS  PubMed  Google Scholar 

  • Guo HN, Wu JH, Chen XY, Luo XL, Lu R, Shi YJ, Qin HM, Xiao JL, Tian YC (2003) Cotton plants transformed with the activated chimeric Cry1Ac and API-B genes. Acta Bot Sin 45(1):108–113

    CAS  Google Scholar 

  • Guo X, Huang C, Jin S, Liang S, Nie Y, Zhang X (2007) Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration. Biol Plant 1:242–248

    Google Scholar 

  • Gupta SK, Srivastava AK, Singh PK, Tuli R (1997) In vitro proliferation of shoots and regeneration of cotton. Plant Cell, Tissue Organ Cult 51:149–152

    Google Scholar 

  • Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, Hequet EF, Wyatt BG, Jividen GM, Holaday AS (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832

    CAS  PubMed  Google Scholar 

  • Haq IU, Zafar Y (2004) Effect of nitrates on embryo induction efficiency in cotton (Gossypium hirsutum L.). Afr J Biotechnol 3(6):319–323

    Google Scholar 

  • Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Erratum to: Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 43:476. doi:10.1007/s11262-011-0606-8

    CAS  Google Scholar 

  • Haung GC, Dong YM, Sun JS (1999) Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as reporter. Chinese Sci Bull 44:698–701

    Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald D, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854. doi:10.1093/pcp/pci201

    CAS  PubMed  Google Scholar 

  • Hemphill JK, Maier CGA, Chapman KD (1998) Rapid in vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep 17:273–278

    CAS  Google Scholar 

  • Hu L, Yang X, Yuan D, Zeng F, Zhang X (2011) GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9(9):1038–1048

    CAS  PubMed  Google Scholar 

  • Hülskamp M, Schnittger A (2001) Plant tissues. eLS. doi:10.1002/97804.70015902.a0002070

  • Hussain SS, Rao AQ, Hussain T (2009) Cotton somatic embryo morphology affects its conversion to plant. Biol Plant 53(2):307–311

    CAS  Google Scholar 

  • Ikram-Ul-Haq (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Rep 22:279–288

    CAS  Google Scholar 

  • James C (2012) Global status of commercialized Biotech/GM crops. ISAAA brief no. 44, Ithaca, New York. http://www.isaaa.org/resources/publications/briefs/44/download/isaaa-brief-44-2012.pdf

  • Jensen WA, Fisher DB (1967) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78(2):158–183

    CAS  PubMed  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312

    CAS  PubMed  Google Scholar 

  • Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13(2):196–223. doi:10.1590/S0103-31312001000200008

    Google Scholar 

  • Jiménez V, Thomas C (2006) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Mujib A, Šamaj J (eds) somatic embryogenesis. Springer, Berlin, pp 103–118

    Google Scholar 

  • Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 81:229–237. doi:10.1007/s11240-004-5209-9

    CAS  Google Scholar 

  • Jin S, Liang S, Zhang X, Nie Y, Guo X (2006a) An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell, Tissue Organ Cult 85:181–185

    Google Scholar 

  • Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006b) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524

    CAS  Google Scholar 

  • Jin SX, Liu GZ, Zhu HG, Yang XY, Zhang XL (2012) Transformation of upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11(6):910–919

    CAS  Google Scholar 

  • Kantartzi SK, Ulloa M, Sacks E, Stewart JM (2009) Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 36(1):141–147. doi:10.1007/s10709-008-9327-x

    Google Scholar 

  • Katageri IS, Vamadevaiah HM, Udikeri SS, Khadi BM, Kumar PA (2007) Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci 93(12):1843–1847

    CAS  Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John M (1997) Transgenic cotton resistant to herbicide bialaphos. Trans Res 6:385–392

    CAS  Google Scholar 

  • Keshamma E, Rohini S, Rao KS, Madhusudan B, Kumar MU (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272

    CAS  Google Scholar 

  • Khadi BM, Santhy V, Yadav MS (2010) Cotton: an introduction. In: Zher UB (ed) Biotechnology advances in agriculture and forestry, 65th edn. Springer, Berlin, pp 1–14

    Google Scholar 

  • Khan T, Singh AK, Pant RC (2006) Regeneration via somatic embryogenesis in different cultivars of cotton (Gossypium spp.). In Vitro Cell Dev Biol Plant 42:493–501

    Google Scholar 

  • Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell, Tissue Organ Cult 101:323–330

    Google Scholar 

  • Khan GA, Bakhsh A, Ghazanfar M, Raizuddin S, Husnaian T (2013) Development of transgenic cotton lines harboring a pesticidal gene (cry1Ab). Emir J Food Agric 25:434–442. doi:10.9755/ejfa.v25i6.13133

    Google Scholar 

  • Kouakou T et al (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsutum L.). Plant Cell, Tissue Organ Cult 90:25–29

    CAS  Google Scholar 

  • Kumar D, Kirti PB (2014) Pathogen induced SGT1 of Arachis diogoi induces cell death and disease resistance responses in tobacco and peanut. Plant Biotechnol J. doi:10.1111/pbi.12237

    Google Scholar 

  • Kumar S, Timko MP (2004) Enhanced tissue-specific expression of the herbicide resistance bar gene in transgenic cotton (Gossypium hirsutum L. cv. Coker 310FR) using the arabidopsis rbcs ats1A promoter. Plant Biotechnol J 21(4):251–259

    CAS  Google Scholar 

  • Kumar M, Tuli R (2004) Plant regeneration in cotton: a short-term inositol starvation promotes developmental synchrony in somatic embryogenesis. In Vitro Cell Dev Biol Plant 40:294–298

    CAS  Google Scholar 

  • Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63

    CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar M, Shukla AK, Singh H, Verma PC, Singh PK (2013) A genotype-independent Agrobacterium mediated transformation of germinated embryo of cotton (Gossypium hirsutum L). Int J Biotechnol Res 3(1):81–90

    Google Scholar 

  • Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) though metabolic stress. Plant Cell Rep 21:635–639

    CAS  PubMed  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE 8:e64190. doi:10.1371/journal.pone.0064190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee J et al (2006) Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223:418–432

    CAS  PubMed  Google Scholar 

  • Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205

    CAS  PubMed  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    CAS  PubMed  Google Scholar 

  • Li FG, Guo SD, Liu CL, Li FL, Cui HZ, Zhou Y, Li XL (1999) The study on the transformation and selection of insect-resistant cotton harboring double-gene. Acta Gossypii Sin 11(2):106–112

    Google Scholar 

  • Li FG, Cui JJ, Liu CL, Wu ZX, Li FL, Zhou Y, Li XL (2000) The study of insect resistant transgenic cotton harboring double-gene and its insect-resistance. Sci Agric Sin 33(1):46–52

    CAS  Google Scholar 

  • Li XB, Cai L, Cheng N-H, Liu J-W (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li X, Wang XD, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsAand acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep 22:691–697. doi:10.1007/s00299-003-0751-1

    CAS  PubMed  Google Scholar 

  • Li J, Han XI, Shen FF, Liu L (2005a) Study on promoting the rate of pollen-tube pathway transformation in Cotton. Acta Gossypii Sin 17(2):67–71

    CAS  Google Scholar 

  • Li XB, Fan X-P, Wang X-L, Cai L, Yang W-C (2005b) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li FF et al (2009a) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell, Tissue Organ Cult 97:225–235

    CAS  Google Scholar 

  • Li FF et al (2009b) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chin Sci Bull 54:1210–1216

    CAS  Google Scholar 

  • Liu XJ, Liu YH, Wang ZX, Wang XJ, Zhang YQ (2007) Generation of glyphostae-tolerant transgenic tobacco and cotton by transformation with a 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene. J Agric Biotechnol 15(6):958–963

    CAS  Google Scholar 

  • Liu JF et al (2011) Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell, Tissue Organ Cult 106:207–214

    CAS  Google Scholar 

  • Liu C, Lin Z, Zhang X (2012) Unbiased genomic distribution of genes related to cell morphogenesis in cotton by chromosome mapping. Plant Cell, Tissue Organ Cult 108:529–534

    Google Scholar 

  • Liu Z, Zhu Z, Zhang T (2013) Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover. In: Zhang B (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 200–210. doi:10.1007/978-1-62703-212-4_7

    Google Scholar 

  • Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, Nie YC, Zhang XL (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9(1):e86895

    PubMed Central  PubMed  Google Scholar 

  • Lu Z, Zeiger E (1994) Selection of higher yield and heat resistance in pima cotton has caused genetically determined changes in stomatal conductance. Physiol Plant 92:273–278

    CAS  Google Scholar 

  • Lu Z, Percy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yield in irrigated pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460

    Google Scholar 

  • Luo J, Gould JH (1999) In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell, Tissue Organ Cult 57:211–213

    Google Scholar 

  • Machado A, Wu Y, Yang Y, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62

    CAS  PubMed  Google Scholar 

  • Majeed A, Husnain T, Riazuddin S (2000) Transformation of virus-resistant Gossypium hirsutum L. with pesticidal gene. Plant Biotechnol 17(2):105–110

    CAS  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen YX (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673. doi:10.1007/s11248-010-9450-1

    PubMed Central  CAS  PubMed  Google Scholar 

  • McFadden HG, De-feyter R, Murray F, Grover A, Llewellyn D, Dennis E, Peacock WJ (2000) Genetic engineering approaches to the improvement of cotton’s tolerance to Verticillium wilt. Advances in Verticillium research and Disease management. APS press, St. Paul, pp 187–191

    Google Scholar 

  • Meng ZH, Liang AH, Yang WC (2007) Effects of hygromycin on cotton cultures and its application in Agrobacterium-mediated cotton transformation. In Vitro Cell Dev Biol 43(2):111–118

    CAS  Google Scholar 

  • Merkle SA, Parrott WA, Finn BS (1995) Morphogenenic aspects of somatic embryogenesis. In: Thrope TA (ed) In vitro embryogenesis in plants. Kulwer, Dordrecht, pp 155–203

    Google Scholar 

  • Meshram LD, Ghongage RA, Marawar MW (1994) Development of male sterile system from various sources in cotton (Gossypium spp.). PKV Res J 18(1):83–86

    Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67. doi:10.1186/1471-2229-10-67

    PubMed Central  PubMed  Google Scholar 

  • Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    CAS  PubMed  Google Scholar 

  • Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa)—a step towards genotype independent regeneration. Plant Cell, Tissue Organ Cult 73:21–35

    CAS  Google Scholar 

  • Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589

    CAS  PubMed  Google Scholar 

  • Mogali SC, Khadi BM, Kategeri IS (2013) High efficiency transformation protocol for two Indian cotton (Gossypium hirsutum) varieties via pollen tube pathway. Ind J Agric Sci 83(9):949–952

    CAS  Google Scholar 

  • Momtaz OA, Hussein EM, Fahmy EM, Ahmed SE (2010) Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90. GM Crops 1:257–266

    PubMed  Google Scholar 

  • Morre JL, Permingeat HR, Romagnoli MV, Heisterborg CM, Vallejos HR (1998) Multiple shoot induction and plant regeneration from embryonic axes of cotton. Plant Cell, Tissue Organ Cult 54:131–136

    CAS  Google Scholar 

  • Mushke R, Sultana T, Pindi PK (2012) High frequency regeneration and multiple shoot induction in Indian cotton (Gossypium hirsutum L.) cultivar. Res J Agric Sci 3(5):1109–1112

    Google Scholar 

  • Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557

    CAS  Google Scholar 

  • Obembe OO, Khan T, Popoola J (2011) High frequency multiple shoots induction and plant regeneration in six elite Indian cotton cultivars. Can J Pure Appl Sci 5(1):1385–1389

    Google Scholar 

  • Oerke EC (2006) Centenary review: Crop losses due to pests. J Agric Sci 144:31–43. doi:10.1017/S002185960.5005708

    Google Scholar 

  • Ohta Y (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci 83:715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ouma JP, Young MM, Reichert NA (2004) Optimization of in vitro regeneration of multiple shoots from hypocotyl sections of cotton (Gossypium hirsutum L.). Afr J Biotechnol 3:169–173

    CAS  Google Scholar 

  • Ozyigit II (2009) In vitro shoot development from three different nodes of cotton (Gossypium hirsutum L.). Nat Bot Horti Agrobot Cluj 37(1):74–78

    Google Scholar 

  • Pandey DK, Singh AK, Chaudhary B (2012) Boron-mediated plant somatic embryogenesis: a provocative model. J Bot. doi:10.1155/2012/375829

    Google Scholar 

  • Parkhi V, Kumar V, Campbell LM et al (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975. doi:10.1007/s11248-010-9374-9

    CAS  PubMed  Google Scholar 

  • Pasapula V, Shen G, Kuppu S et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99. doi:10.1111/j.1467-7652.2010.00535.x

    CAS  PubMed  Google Scholar 

  • Pathi K, Tuteja N (2013) High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv. Narashima) by using embryo apex. Plant Signal Behav 8(1):e22763

    PubMed Central  PubMed  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pollock EG, Jensen WA (1964) Cell development during early embryogenesis in Capsella and Gossypium. Am J Bot 51(9):915–921

    Google Scholar 

  • Poon S, Heath RL, Clarke AE (2012) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160:684–695

    PubMed Central  CAS  PubMed  Google Scholar 

  • Price HJ, Smith RH (1979) Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Anderss. Planta 145:305–307

    CAS  PubMed  Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319

    CAS  Google Scholar 

  • Rajasekaran K, Hudspeth RL, Cray JW, Anderson DM, Cleveland TE (2000) High-freequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic calli suspension cultures. Plant Cell Rep 19:539–545

    CAS  Google Scholar 

  • Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554

    CAS  PubMed  Google Scholar 

  • Rashid B, Saleem Z, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254

    CAS  Google Scholar 

  • Rauf S, Usman M, Fatima B, Khan A (2005) In vitro regeneration and multiple shoot induction in upland cotton (Gossypium hirsutum L.). Plant Tissue Organ Cult 15(1):75–81

    Google Scholar 

  • Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3(3):410–418. doi:10.1038/nprot.2008.9

    CAS  PubMed  Google Scholar 

  • Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9:308–345

    PubMed  Google Scholar 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakhanokho HF, Zipf A, Rajasekaran K, Saba S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (G. hirsutum L.) and Pima (G. barbadense L.) cottons. Crop Sci 41:1235–1240

    Google Scholar 

  • Sakhanokho HF, Peggy OA, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in selected Georgia and Pee Dee cotton lines. Crop Sci 44:2199–2205

    Google Scholar 

  • Sakhanokho H, Peggy OA, May OL, Chee PW (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell, Tissue Organ Cult 81:91–95

    CAS  Google Scholar 

  • Sanjaya et al (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 81:55–63

    CAS  Google Scholar 

  • Satyavathi VV, Prasad V, Lakshmi GB, Lakshmi S (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223

    CAS  Google Scholar 

  • Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxin and auxin transport inhibitors. Cell Differ 21:53–62

    CAS  PubMed  Google Scholar 

  • Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 3:178–181

    Google Scholar 

  • Song X, Gu Y, Qin G (2007) Application of transformation method via the pollen-tube pathway in agriculture molecular breeding. Life Sci J 4(1):77–79

    CAS  Google Scholar 

  • Sun Y, Zhang X, Jin S, Liang S, Nie Y (2003) Somatic embryogenesis and plant regeneration in wild cotton (Gossypium Klotzschianum). Plant Cell, Tissue Organ Cult 75:247–253

    CAS  Google Scholar 

  • Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25(4):289–296

    CAS  PubMed  Google Scholar 

  • Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathotre KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103(48):18054–18059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    CAS  PubMed  Google Scholar 

  • Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PLoS ONE 5:e14218. doi:10.1371/journal.pone.0014218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell, Tissue Organ Cult 83:83–96. doi:10.1007/s11240-004-6155-2

    CAS  Google Scholar 

  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6(3):164–173

    CAS  Google Scholar 

  • Trieu AT et al (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    CAS  PubMed  Google Scholar 

  • Tripathy S, Reddy GM (2002) A study on the influence of genotype, medium and additives on the induction of multiple shoots in indian cotton cultivars. Asian J Microbiol Biotechnol Environ Sci 4(4):515–519

    Google Scholar 

  • Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6:231–234

    CAS  PubMed  Google Scholar 

  • Trolinder NL, Goodin JR (1988a) Somatic embryogenesis in cotton (Gossypium) I. Effects of source of explant and hormone regime. Plant Cell, Tissue Organ Cult 12:178–181

    Google Scholar 

  • Trolinder NL, Goodin JR (1988b) Somatic embryogenesis in cotton (Gossypium) II. Requirements for embryo development and plant regeneration. Plant Cell, Tissue Organ Cult 12:43–53

    CAS  Google Scholar 

  • Trolinder NL, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8:133–136

    CAS  PubMed  Google Scholar 

  • Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5:263–266

    CAS  Google Scholar 

  • Vajhala CSK, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS ONE 8:e72542

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR (2004) Over- expression of gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breed 123:454–459. doi:10.1111/j.1439-0523.2004.01005.x

    CAS  Google Scholar 

  • Wang YX, Wang XF, Zhi-ying MA, Gui-yin Z, Gai-Ying H (2006) Somatic embryogenesis and plant regeneration from two recalcitrant genotypes of Gossypium hirsutum L. Agric Sci China 5(5):323–329

    CAS  Google Scholar 

  • Wang M, Zhang B, Wang Q (2013) Cotton transformation via pollen tube pathway. In: Zhang B (ed) Transgenic cotton: methods and protocols, Methods in molecular biology. Springer, New York, pp 71–77. doi:10.1007/978-1-62703-212-4_7

    Google Scholar 

  • Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19(6):511–550

    CAS  Google Scholar 

  • Wu JH, Zhang XL, Nie YC, Jin SX, Ling SG (2004) Factor affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell Dev Biol Plant 40:371–375

    CAS  Google Scholar 

  • Wu J, Zhang X, Nie Y, Luo X (2005) High-efficiency transformation Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146

    CAS  Google Scholar 

  • Wu J, Luo X, Guo H, Xiao J, Tian Y (2006a) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394

    CAS  Google Scholar 

  • Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006b) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127

    CAS  PubMed  Google Scholar 

  • Wu J, Luo X, Wang Z, Tian Y, Liang A, Sun Y (2008a) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30:547–554. doi:10.1007/s10529-007-9555-7

    CAS  PubMed  Google Scholar 

  • Wu SJ et al (2008b) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185

    CAS  Google Scholar 

  • Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res 20:963–973. doi:10.1007/s11248-011-9483-0

    PubMed  Google Scholar 

  • Xie L, Li F, Chen M, Lu L (2005) Acqirment of transgenic cotton (Gossypium hirsutum L.) resistant to herbicide and insect using glyphosate-tolerant aroAM12 gene as a selectable marker. Genet Mol Biol 6:151–160

  • Xu S-M, Brill E, Llewellyn DJ, Furbank RT, Ruan Y-L (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5:430–441

    CAS  PubMed  Google Scholar 

  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014. doi:10.1093/pcp/pch115

    CAS  PubMed  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    CAS  Google Scholar 

  • Yang SS et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775. doi:10.1111/j.1365-313X.2006.02829.x

    CAS  Google Scholar 

  • Yang XY, Zhang XL, Fu LL, Min L, Liu GZ (2010) Multiple shoot induction in wild cotton (Gossypium bickki) through organogenesis and the analysis of genetic homogeneity of the regenerated plants. Bilogia 65(3):496–503

    CAS  Google Scholar 

  • Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110. doi:10.1186/1471-2229-12-110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yazdanpanah F, Tohidfar M, Ashari ME, Ghareyazi B, Jashni MK, Mosavi M (2009) Enhanced insect resistance to bollworm (Helicoverpa armigera) in cotton containing a synthetic cry1Ab gene. Ind J Biotechnol 8:72–77

    CAS  Google Scholar 

  • Yuceer SU, Koc NK (2006) Agrobacterium-mediated transformation and regeneration of cotton plants. Russ J Plant Physiol 53(3):413–417. doi:10.1134/S1021443706030198

    CAS  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Over expression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63(10):3741–3748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256

    Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60(2):167–183

    CAS  PubMed  Google Scholar 

  • Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007a) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90(5):620–628

    CAS  PubMed  Google Scholar 

  • Zeng F, Zhang X, Jin S, Cheng L, Liang S, Hu L, Guo X, Nie Y, Cao J (2007b) Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell, Tissue Organ Cult 90(1):63–70

    CAS  Google Scholar 

  • Zhang BH, Liu F, Yao CB (2000) Plant regeneration via somatic embryogenesis in cotton. Plant Cell, Tissue Organ Cult 60:89–94

    Google Scholar 

  • Zhang YH, Haung LP, Zhou XY, Wang DM (2008) The preliminary study on transformation of cotton pollen using Agrobacterium-mediated vacuum infiltration. Cotton Sci 20(5):354–358

    CAS  Google Scholar 

  • Zhang H, Zhao F, Zhao Y, Guo C, Li C, Xiao K (2009) Establishment of transgenic cotton lines with high efficiency via pollen-tube pathway. Front Agric China 3(4):359–365

    Google Scholar 

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011a) Creating drought-and salt tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6(6):861–863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M et al (2011b) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    CAS  PubMed  Google Scholar 

  • Zhang DY, Yang HL, Li XS, Li HY, Wang YC (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34:1–11

    Google Scholar 

  • Zhao FY, Li YF, Xu P (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207

    CAS  PubMed  Google Scholar 

  • Zhou GY (1992) Introduction of exogenous DNA into plants after pollination via the pollen tube pathway. In: Ottaviana E et al (eds) Angiosperm pollen and Ovules. Springer, New York, pp 336–339

    Google Scholar 

  • Zhou GY, Weng J, Zeng Y et al (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Author V.N.J. is greatly thankful to Agri Biotech Foundation (Formerly AP Netherlands Biotechnology Programme) Hyderabad, India for awarding fellowship. The authors also thank G. Pakki Reddy (Executive Director, Agri Biotech Foundation, Hyderabad, India), J. S. Bentur and G. Mallikarjuna of the Agri Biotech Foundation for their suggestions in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kirti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juturu, V.N., Mekala, G.K. & Kirti, P.B. Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tiss Organ Cult 120, 813–839 (2015). https://doi.org/10.1007/s11240-014-0640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0640-z

Keywords

Navigation