Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 120, Issue 3, pp 813–839 | Cite as

Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.)

  • Vijaya Naresh Juturu
  • Gopala Krishna Mekala
  • P. B. Kirti


Cotton (Gossypium spp.) is an economically very important fiber yielding crop, which is grown almost in sixty-five countries throughout the world. Like other crops, cotton also suffers from major biotic and abiotic stresses. In fact, the losses due to insect pests in cotton are enormous compared to other crops, thereby reducing the actual economic potential. It is a well-known fact that more than half of the total pesticide consumption across the world is utilized on controlling insect pests in this crop. Though conventional breeding and integrated pest management practices have resulted in improving/developing fiber quality, heat tolerance, CMS lines and yield, much success has not been reported with respect to biotic and abiotic stresses, especially insect pests due to the non-availability of genes conferring resistance within a crossable gene pool. Thus, genetic engineering has become an inevitable tool in finding solutions to these problems and transfer of alien genes into commercially important cotton varieties in the last two decades. In fact ~81 % of cotton grown throughout the world is genetically modified. Despite these achievements, several limitations still exist in achieving cotton transformation. In this review, we discuss the status of different regeneration and transformation methods in cotton along with the major factors that exert influence in developing cotton transgenics, besides the chronological progress made in tissue culture and cotton transformation technology.


Genetic transformation Gossypium spp. In planta transformation Organogenesis Somatic embryogenesis 



N 6-[2-Isopentyl] adenine


2,4-Dichlorophenoxyacetic acid


Silver nitrate


Benzyl amino purine


Crystalline protein 1Ab


Crystalline protein 1Ac


Days post anthesis


Gibberellic acid 3




α-Naphthalene acetic acid





Author V.N.J. is greatly thankful to Agri Biotech Foundation (Formerly AP Netherlands Biotechnology Programme) Hyderabad, India for awarding fellowship. The authors also thank G. Pakki Reddy (Executive Director, Agri Biotech Foundation, Hyderabad, India), J. S. Bentur and G. Mallikarjuna of the Agri Biotech Foundation for their suggestions in preparing the manuscript.


  1. Abdellatef E, Khalafalla MM (2007) Adventitious shoot and plantlet formation in medium staple cotton cultivar (Gossypium hirsutum L. cv. Barac [67] B). Int J Agric Biol 9:913–916Google Scholar
  2. Abdurakhmonov IY, Buriev ZT, Saha S, Jenkins JN, Abdukarimov A, Pepper AE (2014) Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat Comm. doi: 10.1038/ncomms4062 Google Scholar
  3. Agrawal DC, Banerjee AK, Kolala RR, Dhage AB, Kulkarni WV, Nalawade SM, Hazra S, Krishnamurthy KV (1997) In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 16:647–652Google Scholar
  4. Allen RD (2010) Opportunities for engineering abiotic stresses. In: Zher UB (ed) Biotechnology advances in agriculture and forestry, 65th edn. Springer, Berlin, pp 127–148Google Scholar
  5. Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2010) Cotton transgenics with antisense AC1 gene for resistance against cotton leaf curl virus. Electron J Plant Breed 1(4):360–369Google Scholar
  6. Amudha J, Balasubramani G, Malathi VG, Monga D, Kranthi KR (2011) Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr Sci 101(3):300–307Google Scholar
  7. Aragão FJL, Vianna GR, Carvalheira SBRC, Rech EL (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Sci 168:1227–1233Google Scholar
  8. Arshad M, Zafar Y, Asad S (2013) Silicon carbide whisker-mediated transformation. In: Zhang Baohong (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 79–91. doi: 10.1007/978-1-62703-212-4_7 Google Scholar
  9. Asad S, Mukhtar Z, Nazir F, Hashmi J, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169PubMedGoogle Scholar
  10. Aslam M, Ashfaq M, Saeed T, Ul Allah S, Zafar Y (2010) In vitro response of cotton (Gossypium hirsutum L.) from apical meristem cultures. American-Eurasian J Agric Environ Sci 7(1):07–11Google Scholar
  11. Aydin Y, Ipekci Z, Talas-Ogras T, Zehir H, Bajrovic K, Gozukirmizi N (2004) High frequency somatic embryogenesis in cotton. Biol Plant 48(4):491–495Google Scholar
  12. Aydin Y, Talas-Ogras T, Ipekci Z, Gozukirmizi N (2006) Effects of brassinosteroid on cotton regeneration via somatic embryogenesis. Biol Bratisl 61(3):289–293Google Scholar
  13. Bai J, Wu F, Mao Y, He Y (2013) In planta transformation of Brassica rapa and B. napus via vernalization-infiltration methods. Protoc Exch. doi: 10.1038/protex.2013.067
  14. Banerjee AK, Agarwal DC, Nalawade SM, Hazra S (2003) Multipleshoot induction and plant regeneration from embryo axes of six cultivars of Gossypium hirsutum. Biol Plant 47(3):433–436Google Scholar
  15. Barampuram S, Allen G, Krasnyanski S (2014) Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue Organ Cult 118:179–185Google Scholar
  16. Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow DW (1992) Engineering 2,4-D resistance into cotton. Theor Appl Genet 83:645–649. doi: 10.1007/BF00226910 PubMedGoogle Scholar
  17. Bibi N, Fan K, Yuan S, Ni M, Ahmad MI, Malik W, Wang X (2013) An efficient and highly reproducible approach for the selection of upland transgenic cotton produced by pollen tube pathway method. Aust J Crop Sci 7(11):1714–1722Google Scholar
  18. Chakravarthy VSK (2013) Rapid production of multiple shoots from cotyledonary node explants of an elite cotton (Gossypium hirsutum L.) variety. Res Plant Biol 3(5):6–13Google Scholar
  19. Chen TZ, Wu S, Zhao J, Guo WZ, Zhang TZ (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555. doi: 10.1007/s10529-009-0179-y Google Scholar
  20. Chen Y, Rivilin A, lange A, Ye X, Vaghchhipawala Z, Eisinger E, Dersch E, Paris M, Martinell B, Wan Y (2013) High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). Plant Cell Rep. doi: 10.1007/s00299-013-1519-x
  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedGoogle Scholar
  22. Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5:1494–1495PubMedCentralPubMedGoogle Scholar
  23. Daud MK, Variath MT, Ali S, Jamil H, Khan MT, Shafi M, Shuijin Z (2009) Genetic transformation of Bar gene and it inheritance and segregation behavior in the resultant transgenic cotton germplasm (BR001). Pak J Bot 41(5):2167–2178Google Scholar
  24. Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 32:89–93Google Scholar
  25. Divya K, Swathi AT, Jami SK, Kirti PB (2008) Efficient regeneration from hypocotyls explants in three cotton cultivars. Biol Plant 52(2):201–208Google Scholar
  26. Divya K, Jami SK, Kirti PB (2010) Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol Biol 73:293–308. doi: 10.1007/s11103-010-9615-6 PubMedGoogle Scholar
  27. Dutt Y, Wang XD, Zhu YZ, Li YY (2004) Breeding for high yield and fibre quality in colored cotton. Plant Breed 123:145–151Google Scholar
  28. Eapen Susan (2011) Pollen grains as a target for introduction of foreign genes into plants: an assessment. Physiol Mol Biol Plants 17(1):1–8PubMedCentralPubMedGoogle Scholar
  29. Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336PubMedGoogle Scholar
  30. Finer JJ (1988) Plant regeneration from somatic embryogenic suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Rep 7:399–402PubMedGoogle Scholar
  31. Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–589PubMedGoogle Scholar
  32. Finer JJ, Smith RH (1984) Initiation of callus and somatic embryos fro explants of mature cotton (Gossypium klotzschianum Anderss). Plant Cell Rep 3:41–43PubMedGoogle Scholar
  33. Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cell Dev Biol 299:166–173Google Scholar
  34. Firoozabady E, DeBoer D, Merlo D, Halk E, Amerson L, Rashka K, Murray E (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10:105–116PubMedGoogle Scholar
  35. Fischer C, Neuhaus G (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J 9:659–669Google Scholar
  36. Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen): for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187PubMedGoogle Scholar
  37. Ganesan M, Jayabalan N (2005) Carbon source dependent somatic embryogenesis and plant regeneration in cotton, Gossypium hirsutum L. cv. SVPR2 through suspension cultures. Ind J Exp Biol 43:921–925Google Scholar
  38. Ganesan M, Bhanumathi P, Kumari GK, Lakshmi Prabha A, Song PS, Jayabalan N (2009) Transgenic cotton (Gossypiumhirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5(2):63–74Google Scholar
  39. Gawel NJ, Robacker CD (1990) Somatic embryogenesis in two Gossypium hirsutum genotypes on semi-solid versus liquid proliferation media. Plant Cell, Tissue Organ Cult 23:201–204Google Scholar
  40. Gould J, Banister S, Hasegawa O, Fahima M, Smith RH (1991) Regeneration of Gossypium hirsutum and Gossypium barbadense from shoot apex tissues for transformation. Plant Cell Rep 10:12–16PubMedGoogle Scholar
  41. Gounaris Y, Galanopoulou S, Galanopoulos N et al (2005) Pollen-mediated genetic transformation of cotton with the Arabidopsis thaliana hmgr cDNA using the particle gun. J Food Agric Environ 3(2):157–160Google Scholar
  42. Graves ACF, Goldman SL (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7(1):43–50PubMedGoogle Scholar
  43. Guo HN, Wu JH, Chen XY, Luo XL, Lu R, Shi YJ, Qin HM, Xiao JL, Tian YC (2003) Cotton plants transformed with the activated chimeric Cry1Ac and API-B genes. Acta Bot Sin 45(1):108–113Google Scholar
  44. Guo X, Huang C, Jin S, Liang S, Nie Y, Zhang X (2007) Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration. Biol Plant 1:242–248Google Scholar
  45. Gupta SK, Srivastava AK, Singh PK, Tuli R (1997) In vitro proliferation of shoots and regeneration of cotton. Plant Cell, Tissue Organ Cult 51:149–152Google Scholar
  46. Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX, Hozain M, Kang W, Kiedaisch B, Strauss RE, Hequet EF, Wyatt BG, Jividen GM, Holaday AS (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832PubMedGoogle Scholar
  47. Haq IU, Zafar Y (2004) Effect of nitrates on embryo induction efficiency in cotton (Gossypium hirsutum L.). Afr J Biotechnol 3(6):319–323Google Scholar
  48. Hashmi JA, Zafar Y, Arshad M, Mansoor S, Asad S (2011) Erratum to: Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 43:476. doi: 10.1007/s11262-011-0606-8 Google Scholar
  49. Haung GC, Dong YM, Sun JS (1999) Introduction of exogenous DNA into cotton via the pollen-tube pathway with GFP as reporter. Chinese Sci Bull 44:698–701Google Scholar
  50. He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald D, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854. doi: 10.1093/pcp/pci201 PubMedGoogle Scholar
  51. Hemphill JK, Maier CGA, Chapman KD (1998) Rapid in vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep 17:273–278Google Scholar
  52. Hu L, Yang X, Yuan D, Zeng F, Zhang X (2011) GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9(9):1038–1048PubMedGoogle Scholar
  53. Hülskamp M, Schnittger A (2001) Plant tissues. eLS. doi: 10.1002/97804.70015902.a0002070
  54. Hussain SS, Rao AQ, Hussain T (2009) Cotton somatic embryo morphology affects its conversion to plant. Biol Plant 53(2):307–311Google Scholar
  55. Ikram-Ul-Haq (2004) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) via vacuum infiltration. Plant Mol Biol Rep 22:279–288Google Scholar
  56. James C (2012) Global status of commercialized Biotech/GM crops. ISAAA brief no. 44, Ithaca, New York.
  57. Jensen WA, Fisher DB (1967) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78(2):158–183PubMedGoogle Scholar
  58. Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312PubMedGoogle Scholar
  59. Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13(2):196–223. doi: 10.1590/S0103-31312001000200008 Google Scholar
  60. Jiménez V, Thomas C (2006) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Mujib A, Šamaj J (eds) somatic embryogenesis. Springer, Berlin, pp 103–118Google Scholar
  61. Jin S, Zhang X, Liang S, Nie Y, Guo X, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 81:229–237. doi: 10.1007/s11240-004-5209-9 Google Scholar
  62. Jin S, Liang S, Zhang X, Nie Y, Guo X (2006a) An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell, Tissue Organ Cult 85:181–185Google Scholar
  63. Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006b) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524Google Scholar
  64. Jin SX, Liu GZ, Zhu HG, Yang XY, Zhang XL (2012) Transformation of upland cotton (Gossypium hirsutum L.) with gfp gene as a visual marker. J Integr Agric 11(6):910–919Google Scholar
  65. Kantartzi SK, Ulloa M, Sacks E, Stewart JM (2009) Assessing genetic diversity in Gossypium arboreum L. cultivars using genomic and EST-derived microsatellites. Genetica 36(1):141–147. doi: 10.1007/s10709-008-9327-x Google Scholar
  66. Katageri IS, Vamadevaiah HM, Udikeri SS, Khadi BM, Kumar PA (2007) Genetic transformation of an elite Indian genotype of cotton (Gossypium hirsutum L.) for insect resistance. Curr Sci 93(12):1843–1847Google Scholar
  67. Keller G, Spatola L, McCabe D, Martinell B, Swain W, John M (1997) Transgenic cotton resistant to herbicide bialaphos. Trans Res 6:385–392Google Scholar
  68. Keshamma E, Rohini S, Rao KS, Madhusudan B, Kumar MU (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272Google Scholar
  69. Khadi BM, Santhy V, Yadav MS (2010) Cotton: an introduction. In: Zher UB (ed) Biotechnology advances in agriculture and forestry, 65th edn. Springer, Berlin, pp 1–14Google Scholar
  70. Khan T, Singh AK, Pant RC (2006) Regeneration via somatic embryogenesis in different cultivars of cotton (Gossypium spp.). In Vitro Cell Dev Biol Plant 42:493–501Google Scholar
  71. Khan T, Reddy VS, Leelavathi S (2010) High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell, Tissue Organ Cult 101:323–330Google Scholar
  72. Khan GA, Bakhsh A, Ghazanfar M, Raizuddin S, Husnaian T (2013) Development of transgenic cotton lines harboring a pesticidal gene (cry1Ab). Emir J Food Agric 25:434–442. doi: 10.9755/ejfa.v25i6.13133 Google Scholar
  73. Kouakou T et al (2007) Phenolic compounds and somatic embryogenesis in cotton (Gossypium hirsutum L.). Plant Cell, Tissue Organ Cult 90:25–29Google Scholar
  74. Kumar D, Kirti PB (2014) Pathogen induced SGT1 of Arachis diogoi induces cell death and disease resistance responses in tobacco and peanut. Plant Biotechnol J. doi: 10.1111/pbi.12237 Google Scholar
  75. Kumar S, Timko MP (2004) Enhanced tissue-specific expression of the herbicide resistance bar gene in transgenic cotton (Gossypium hirsutum L. cv. Coker 310FR) using the arabidopsis rbcs ats1A promoter. Plant Biotechnol J 21(4):251–259Google Scholar
  76. Kumar M, Tuli R (2004) Plant regeneration in cotton: a short-term inositol starvation promotes developmental synchrony in somatic embryogenesis. In Vitro Cell Dev Biol Plant 40:294–298Google Scholar
  77. Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18:59–63Google Scholar
  78. Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216PubMedCentralPubMedGoogle Scholar
  79. Kumar M, Shukla AK, Singh H, Verma PC, Singh PK (2013) A genotype-independent Agrobacterium mediated transformation of germinated embryo of cotton (Gossypium hirsutum L). Int J Biotechnol Res 3(1):81–90Google Scholar
  80. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) though metabolic stress. Plant Cell Rep 21:635–639PubMedGoogle Scholar
  81. Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE 8:e64190. doi: 10.1371/journal.pone.0064190 PubMedCentralPubMedGoogle Scholar
  82. Lee J et al (2006) Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223:418–432PubMedGoogle Scholar
  83. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232:1191–1205PubMedGoogle Scholar
  84. Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470PubMedGoogle Scholar
  85. Li FG, Guo SD, Liu CL, Li FL, Cui HZ, Zhou Y, Li XL (1999) The study on the transformation and selection of insect-resistant cotton harboring double-gene. Acta Gossypii Sin 11(2):106–112Google Scholar
  86. Li FG, Cui JJ, Liu CL, Wu ZX, Li FL, Zhou Y, Li XL (2000) The study of insect resistant transgenic cotton harboring double-gene and its insect-resistance. Sci Agric Sin 33(1):46–52Google Scholar
  87. Li XB, Cai L, Cheng N-H, Liu J-W (2002) Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 130:666–674PubMedCentralPubMedGoogle Scholar
  88. Li X, Wang XD, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsAand acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep 22:691–697. doi: 10.1007/s00299-003-0751-1 PubMedGoogle Scholar
  89. Li J, Han XI, Shen FF, Liu L (2005a) Study on promoting the rate of pollen-tube pathway transformation in Cotton. Acta Gossypii Sin 17(2):67–71Google Scholar
  90. Li XB, Fan X-P, Wang X-L, Cai L, Yang W-C (2005b) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875PubMedCentralPubMedGoogle Scholar
  91. Li FF et al (2009a) Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell, Tissue Organ Cult 97:225–235Google Scholar
  92. Li FF et al (2009b) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chin Sci Bull 54:1210–1216Google Scholar
  93. Liu XJ, Liu YH, Wang ZX, Wang XJ, Zhang YQ (2007) Generation of glyphostae-tolerant transgenic tobacco and cotton by transformation with a 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene. J Agric Biotechnol 15(6):958–963Google Scholar
  94. Liu JF et al (2011) Biolistic transformation of cotton (Gossypium hirsutum L.) with the phyA gene from Aspergillus ficuum. Plant Cell, Tissue Organ Cult 106:207–214Google Scholar
  95. Liu C, Lin Z, Zhang X (2012) Unbiased genomic distribution of genes related to cell morphogenesis in cotton by chromosome mapping. Plant Cell, Tissue Organ Cult 108:529–534Google Scholar
  96. Liu Z, Zhu Z, Zhang T (2013) Development of transgenic CryIA(c) + GNA cotton plants via pollen tube pathway method confers resistance to Helicoverpa armigera and Aphis gossypii Glover. In: Zhang B (ed) Transgenic cotton: methods and protocols, methods in molecular biology, vol 958. Springer, New York, pp 200–210. doi: 10.1007/978-1-62703-212-4_7 Google Scholar
  97. Liu GZ, Li XL, Jin SX, Liu XY, Zhu LF, Nie YC, Zhang XL (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9(1):e86895PubMedCentralPubMedGoogle Scholar
  98. Lu Z, Zeiger E (1994) Selection of higher yield and heat resistance in pima cotton has caused genetically determined changes in stomatal conductance. Physiol Plant 92:273–278Google Scholar
  99. Lu Z, Percy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yield in irrigated pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460Google Scholar
  100. Luo J, Gould JH (1999) In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell, Tissue Organ Cult 57:211–213Google Scholar
  101. Machado A, Wu Y, Yang Y, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62PubMedGoogle Scholar
  102. Majeed A, Husnain T, Riazuddin S (2000) Transformation of virus-resistant Gossypium hirsutum L. with pesticidal gene. Plant Biotechnol 17(2):105–110Google Scholar
  103. Mao YB, Tao XY, Xue XY, Wang LJ, Chen YX (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673. doi: 10.1007/s11248-010-9450-1 PubMedCentralPubMedGoogle Scholar
  104. McFadden HG, De-feyter R, Murray F, Grover A, Llewellyn D, Dennis E, Peacock WJ (2000) Genetic engineering approaches to the improvement of cotton’s tolerance to Verticillium wilt. Advances in Verticillium research and Disease management. APS press, St. Paul, pp 187–191Google Scholar
  105. Meng ZH, Liang AH, Yang WC (2007) Effects of hygromycin on cotton cultures and its application in Agrobacterium-mediated cotton transformation. In Vitro Cell Dev Biol 43(2):111–118Google Scholar
  106. Merkle SA, Parrott WA, Finn BS (1995) Morphogenenic aspects of somatic embryogenesis. In: Thrope TA (ed) In vitro embryogenesis in plants. Kulwer, Dordrecht, pp 155–203Google Scholar
  107. Meshram LD, Ghongage RA, Marawar MW (1994) Development of male sterile system from various sources in cotton (Gossypium spp.). PKV Res J 18(1):83–86Google Scholar
  108. Miao W, Wang X, Li M, Song C, Wang Y, Hu D, Wang J (2010) Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol 10:67. doi: 10.1186/1471-2229-10-67 PubMedCentralPubMedGoogle Scholar
  109. Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308PubMedGoogle Scholar
  110. Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of highly regenerable elite Acala cotton (Gossypium hirsutum cv. Maxxa)—a step towards genotype independent regeneration. Plant Cell, Tissue Organ Cult 73:21–35Google Scholar
  111. Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3 (ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589PubMedGoogle Scholar
  112. Mogali SC, Khadi BM, Kategeri IS (2013) High efficiency transformation protocol for two Indian cotton (Gossypium hirsutum) varieties via pollen tube pathway. Ind J Agric Sci 83(9):949–952Google Scholar
  113. Momtaz OA, Hussein EM, Fahmy EM, Ahmed SE (2010) Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90. GM Crops 1:257–266PubMedGoogle Scholar
  114. Morre JL, Permingeat HR, Romagnoli MV, Heisterborg CM, Vallejos HR (1998) Multiple shoot induction and plant regeneration from embryonic axes of cotton. Plant Cell, Tissue Organ Cult 54:131–136Google Scholar
  115. Mushke R, Sultana T, Pindi PK (2012) High frequency regeneration and multiple shoot induction in Indian cotton (Gossypium hirsutum L.) cultivar. Res J Agric Sci 3(5):1109–1112Google Scholar
  116. Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM (2009) Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Biol Rep 27:549–557Google Scholar
  117. Obembe OO, Khan T, Popoola J (2011) High frequency multiple shoots induction and plant regeneration in six elite Indian cotton cultivars. Can J Pure Appl Sci 5(1):1385–1389Google Scholar
  118. Oerke EC (2006) Centenary review: Crop losses due to pests. J Agric Sci 144:31–43. doi: 10.1017/S002185960.5005708 Google Scholar
  119. Ohta Y (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci 83:715–719PubMedCentralPubMedGoogle Scholar
  120. Ouma JP, Young MM, Reichert NA (2004) Optimization of in vitro regeneration of multiple shoots from hypocotyl sections of cotton (Gossypium hirsutum L.). Afr J Biotechnol 3:169–173Google Scholar
  121. Ozyigit II (2009) In vitro shoot development from three different nodes of cotton (Gossypium hirsutum L.). Nat Bot Horti Agrobot Cluj 37(1):74–78Google Scholar
  122. Pandey DK, Singh AK, Chaudhary B (2012) Boron-mediated plant somatic embryogenesis: a provocative model. J Bot. doi: 10.1155/2012/375829 Google Scholar
  123. Parkhi V, Kumar V, Campbell LM et al (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975. doi: 10.1007/s11248-010-9374-9 PubMedGoogle Scholar
  124. Pasapula V, Shen G, Kuppu S et al (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99. doi: 10.1111/j.1467-7652.2010.00535.x PubMedGoogle Scholar
  125. Pathi K, Tuteja N (2013) High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L. cv. Narashima) by using embryo apex. Plant Signal Behav 8(1):e22763PubMedCentralPubMedGoogle Scholar
  126. Perlak FJ, Fuchs RL, Dean DA et al (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328PubMedCentralPubMedGoogle Scholar
  127. Pollock EG, Jensen WA (1964) Cell development during early embryogenesis in Capsella and Gossypium. Am J Bot 51(9):915–921Google Scholar
  128. Poon S, Heath RL, Clarke AE (2012) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160:684–695PubMedCentralPubMedGoogle Scholar
  129. Price HJ, Smith RH (1979) Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Anderss. Planta 145:305–307PubMedGoogle Scholar
  130. Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319Google Scholar
  131. Rajasekaran K, Hudspeth RL, Cray JW, Anderson DM, Cleveland TE (2000) High-freequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic calli suspension cultures. Plant Cell Rep 19:539–545Google Scholar
  132. Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545–554PubMedGoogle Scholar
  133. Rashid B, Saleem Z, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254Google Scholar
  134. Rauf S, Usman M, Fatima B, Khan A (2005) In vitro regeneration and multiple shoot induction in upland cotton (Gossypium hirsutum L.). Plant Tissue Organ Cult 15(1):75–81Google Scholar
  135. Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3(3):410–418. doi: 10.1038/nprot.2008.9 PubMedGoogle Scholar
  136. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9:308–345PubMedGoogle Scholar
  137. Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964PubMedCentralPubMedGoogle Scholar
  138. Sakhanokho HF, Zipf A, Rajasekaran K, Saba S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (G. hirsutum L.) and Pima (G. barbadense L.) cottons. Crop Sci 41:1235–1240Google Scholar
  139. Sakhanokho HF, Peggy OA, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in selected Georgia and Pee Dee cotton lines. Crop Sci 44:2199–2205Google Scholar
  140. Sakhanokho H, Peggy OA, May OL, Chee PW (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell, Tissue Organ Cult 81:91–95Google Scholar
  141. Sanjaya et al (2005) Development of cotton transgenics with antisense AV2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 81:55–63Google Scholar
  142. Satyavathi VV, Prasad V, Lakshmi GB, Lakshmi S (2002) High efficiency transformation protocol for three Indian cotton varieties via Agrobacterium tumefaciens. Plant Sci 162:215–223Google Scholar
  143. Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxin and auxin transport inhibitors. Cell Differ 21:53–62PubMedGoogle Scholar
  144. Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 3:178–181Google Scholar
  145. Song X, Gu Y, Qin G (2007) Application of transformation method via the pollen-tube pathway in agriculture molecular breeding. Life Sci J 4(1):77–79Google Scholar
  146. Sun Y, Zhang X, Jin S, Liang S, Nie Y (2003) Somatic embryogenesis and plant regeneration in wild cotton (Gossypium Klotzschianum). Plant Cell, Tissue Organ Cult 75:247–253Google Scholar
  147. Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25(4):289–296PubMedGoogle Scholar
  148. Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52Google Scholar
  149. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathotre KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103(48):18054–18059PubMedCentralPubMedGoogle Scholar
  150. Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762PubMedGoogle Scholar
  151. Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium wilt. PLoS ONE 5:e14218. doi: 10.1371/journal.pone.0014218 PubMedCentralPubMedGoogle Scholar
  152. Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell, Tissue Organ Cult 83:83–96. doi: 10.1007/s11240-004-6155-2 Google Scholar
  153. Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6(3):164–173Google Scholar
  154. Trieu AT et al (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541PubMedGoogle Scholar
  155. Tripathy S, Reddy GM (2002) A study on the influence of genotype, medium and additives on the induction of multiple shoots in indian cotton cultivars. Asian J Microbiol Biotechnol Environ Sci 4(4):515–519Google Scholar
  156. Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6:231–234PubMedGoogle Scholar
  157. Trolinder NL, Goodin JR (1988a) Somatic embryogenesis in cotton (Gossypium) I. Effects of source of explant and hormone regime. Plant Cell, Tissue Organ Cult 12:178–181Google Scholar
  158. Trolinder NL, Goodin JR (1988b) Somatic embryogenesis in cotton (Gossypium) II. Requirements for embryo development and plant regeneration. Plant Cell, Tissue Organ Cult 12:43–53Google Scholar
  159. Trolinder NL, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8:133–136PubMedGoogle Scholar
  160. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Biotechnology 5:263–266Google Scholar
  161. Vajhala CSK, Sadumpati VK, Nunna HR, Puligundla SK, Vudem DR, Khareedu VR (2013) Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests. PLoS ONE 8:e72542PubMedCentralPubMedGoogle Scholar
  162. Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR (2004) Over- expression of gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breed 123:454–459. doi: 10.1111/j.1439-0523.2004.01005.x Google Scholar
  163. Wang YX, Wang XF, Zhi-ying MA, Gui-yin Z, Gai-Ying H (2006) Somatic embryogenesis and plant regeneration from two recalcitrant genotypes of Gossypium hirsutum L. Agric Sci China 5(5):323–329Google Scholar
  164. Wang M, Zhang B, Wang Q (2013) Cotton transformation via pollen tube pathway. In: Zhang B (ed) Transgenic cotton: methods and protocols, Methods in molecular biology. Springer, New York, pp 71–77. doi: 10.1007/978-1-62703-212-4_7 Google Scholar
  165. Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19(6):511–550Google Scholar
  166. Wu JH, Zhang XL, Nie YC, Jin SX, Ling SG (2004) Factor affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell Dev Biol Plant 40:371–375Google Scholar
  167. Wu J, Zhang X, Nie Y, Luo X (2005) High-efficiency transformation Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants. Plant Breed 124:142–146Google Scholar
  168. Wu J, Luo X, Guo H, Xiao J, Tian Y (2006a) Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. Plant Breed 125:390–394Google Scholar
  169. Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006b) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127PubMedGoogle Scholar
  170. Wu J, Luo X, Wang Z, Tian Y, Liang A, Sun Y (2008a) Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae. Biotechnol Lett 30:547–554. doi: 10.1007/s10529-007-9555-7 PubMedGoogle Scholar
  171. Wu SJ et al (2008b) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Rep 26:174–185Google Scholar
  172. Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res 20:963–973. doi: 10.1007/s11248-011-9483-0 PubMedGoogle Scholar
  173. Xie L, Li F, Chen M, Lu L (2005) Acqirment of transgenic cotton (Gossypium hirsutum L.) resistant to herbicide and insect using glyphosate-tolerant aroAM12 gene as a selectable marker. Genet Mol Biol 6:151–160Google Scholar
  174. Xu S-M, Brill E, Llewellyn DJ, Furbank RT, Ruan Y-L (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5:430–441PubMedGoogle Scholar
  175. Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45:1007–1014. doi: 10.1093/pcp/pch115 PubMedGoogle Scholar
  176. Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57Google Scholar
  177. Yang SS et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775. doi: 10.1111/j.1365-313X.2006.02829.x Google Scholar
  178. Yang XY, Zhang XL, Fu LL, Min L, Liu GZ (2010) Multiple shoot induction in wild cotton (Gossypium bickki) through organogenesis and the analysis of genetic homogeneity of the regenerated plants. Bilogia 65(3):496–503Google Scholar
  179. Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110. doi: 10.1186/1471-2229-12-110 PubMedCentralPubMedGoogle Scholar
  180. Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536PubMedCentralPubMedGoogle Scholar
  181. Yazdanpanah F, Tohidfar M, Ashari ME, Ghareyazi B, Jashni MK, Mosavi M (2009) Enhanced insect resistance to bollworm (Helicoverpa armigera) in cotton containing a synthetic cry1Ab gene. Ind J Biotechnol 8:72–77Google Scholar
  182. Yuceer SU, Koc NK (2006) Agrobacterium-mediated transformation and regeneration of cotton plants. Russ J Plant Physiol 53(3):413–417. doi: 10.1134/S1021443706030198 Google Scholar
  183. Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Over expression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63(10):3741–3748PubMedCentralPubMedGoogle Scholar
  184. Zapata C, Park SH, El-Zik KM, Smith RH (1999) Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex. Theor Appl Genet 98:252–256Google Scholar
  185. Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60(2):167–183PubMedGoogle Scholar
  186. Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007a) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90(5):620–628PubMedGoogle Scholar
  187. Zeng F, Zhang X, Jin S, Cheng L, Liang S, Hu L, Guo X, Nie Y, Cao J (2007b) Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell, Tissue Organ Cult 90(1):63–70Google Scholar
  188. Zhang BH, Liu F, Yao CB (2000) Plant regeneration via somatic embryogenesis in cotton. Plant Cell, Tissue Organ Cult 60:89–94Google Scholar
  189. Zhang YH, Haung LP, Zhou XY, Wang DM (2008) The preliminary study on transformation of cotton pollen using Agrobacterium-mediated vacuum infiltration. Cotton Sci 20(5):354–358Google Scholar
  190. Zhang H, Zhao F, Zhao Y, Guo C, Li C, Xiao K (2009) Establishment of transgenic cotton lines with high efficiency via pollen-tube pathway. Front Agric China 3(4):359–365Google Scholar
  191. Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011a) Creating drought-and salt tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6(6):861–863PubMedCentralPubMedGoogle Scholar
  192. Zhang M et al (2011b) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458PubMedGoogle Scholar
  193. Zhang DY, Yang HL, Li XS, Li HY, Wang YC (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34:1–11Google Scholar
  194. Zhao FY, Li YF, Xu P (2006) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L. cv. Zhongmian 35) using glyphosate as a selectable marker. Biotechnol Lett 28:1199–1207PubMedGoogle Scholar
  195. Zhou GY (1992) Introduction of exogenous DNA into plants after pollination via the pollen tube pathway. In: Ottaviana E et al (eds) Angiosperm pollen and Ovules. Springer, New York, pp 336–339Google Scholar
  196. Zhou GY, Weng J, Zeng Y et al (1983) Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101:433–481PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vijaya Naresh Juturu
    • 1
  • Gopala Krishna Mekala
    • 1
  • P. B. Kirti
    • 2
  1. 1.Plant Molecular Biology LaboratoryAgri Biotech Foundation (Formerly AP Netherlands Biotechnology Programme)HyderabadIndia
  2. 2.Department of Plant Sciences, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations