Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 120, Issue 2, pp 489–505 | Cite as

Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1, a CC-NB-LRR type candidate disease resistance gene in Vigna mungo

  • Soumitra Maiti
  • Sunita Patro
  • Amita Pal
  • Nrisingha DeyEmail author
Original Paper

Abstract

In the present study, the upstream regulatory region of CYR1, a CC-NBS-LRR type candidate disease resistance gene of Vigna mungo has been characterized. PLACE and PlantCARE search revealed presence of some biotic and abiotic stress responsive cis-elements namely, wound/pathogen inducible W-box, salicylic acid (SA) inducible TCA element, sugar inducible pyrimidine box abscisic acid/drought responsive MYB etc. in this upstream region. The 877 bp long upstream/putative-promoter region (Cyr1P) was segmented into six different fragments, Cyr1P1-Cyr1P6 and coupled with GUS-reporter gene. Their ability to express the GUS in different plants like tobacco, spinach, onion and Vigna, individually were investigated both transiently and transgenetically. Among these, Cyr1P4 (−572 to +1) and Cyr1P5 (−472 to +1) showed capability to drive expression of GUS in all above plant systems. EMSA and site directed mutagenesis study confirmed effective binding of tobacco nuclear factors to the regulatory region 1 (−673 to −573, RR1) and 2 (−472 to −371, RR2) of Cyr1P promoter. Histochemical and biochemical GUS assay of transgenic tobacco tissues expressing GUS under the control of Cyr1P4 and Cyr1P5 promoter fragments demonstrated that they are near-constitutive type of promoters. The expression level of GUS driven by Cyr1P4 and Cyr1P5 promoter was enhanced in presence of exogenous SA and NaCl. The inducible R gene promoters like Cyr1P4 and Cyr1P5 may become powerful tools in developing MYMIV-resistance in susceptible Vigna and use of such promoters coupled with R genes could strengthen our understanding regarding the molecular events of plant pathogen interaction.

Keywords

Endogenous promoter SA inducible Disease resistance gene Vigna mungo 

Abbreviations

GUS

β-Glucuronidase

SA

Salicylic acid

EMSA

Electrophoretic mobility shift assay

MYMIV

Mungbeen yellow mosaic India virus

MUG

4-Methylumbelliferyl-beta-d-glucuronide

X-gluc

5-Bromo-4-chloro-3-indolyl-beta-d-glucuronic acid

bp

Base pair

h

Hour/s

NaCl

Sodium chloride

X-gal

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

Notes

Acknowledgments

We are thankful to the Director, Institute of Life Sciences for providing us all the lab facilities and providing core fund to carry out the work. We are thankful to Mr. Abhimanyu Das for his kind help in the study.

Supplementary material

11240_2014_616_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 388 kb)

References

  1. Basak J, Kundagrami S, Ghose TK, Pal A (2005) Development of yellow mosaic virus (YMV) resistance linked DNA marker in Vigna mungo from populations segregating for YMV-reaction. Mol Breed 14:375–383. doi: 10.1007/s11032-005-0238-6 CrossRefGoogle Scholar
  2. Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1, 3-beta-glucanase in potato. Plant Mol Biol 24:353–367PubMedCrossRefGoogle Scholar
  3. Belkhadir Y, Subramaniam R, Dangl JL (2004) Plant disease resistance protein signaling: nBS-LRR proteins and their partners. Curr Opin Plant Biol 7:391–399. doi: 10.1016/j.pbi.2004.05.009 PubMedCrossRefGoogle Scholar
  4. Cao Y, Ding X, Cai M et al (2007) The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523–533. doi: 10.1534/genetics.107.075176 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(664–668):670Google Scholar
  6. Chen G, Pan D, Zhou Y et al (2007) Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J Biosci 32:713–721PubMedCrossRefGoogle Scholar
  7. Dellagi A, Helibronn J, Avrova AO et al (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant-Microbe Interact 13:1092–1101. doi: 10.1094/MPMI.2000.13.10.1092 PubMedCrossRefGoogle Scholar
  8. Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782PubMedCrossRefGoogle Scholar
  9. Escobar C, Aristizéabal F, Navas A et al (2012) Isolation of active DNA-binding nuclear proteins from tomato galls induced by root-knot nematodes. Plant Mol Biol Rep 19:375–376. doi: 10.1007/BF02772837 CrossRefGoogle Scholar
  10. Eulgem T (2005) Regulation of the arabidopsis defense transcriptome. Trends Plant Sci 10:71–78. doi: 10.1016/j.tplants.2004.12.006 PubMedCrossRefGoogle Scholar
  11. Eulgem T, Rushton PJ, Schmelzer E et al (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699. doi: 10.1093/emboj/18.17.4689 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  13. Eulgem T, Tsuchiya T, Wang XJ et al (2007) EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant J Cell Mol Biol 49:829–839. doi: 10.1111/j.1365-313X.2006.02999.x CrossRefGoogle Scholar
  14. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. doi: 10.1146/annurev.py.09.090171.001423 CrossRefGoogle Scholar
  15. Gang DR, Costa MA, Fujita M et al (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151. doi: 10.1016/S1074-5521(99)89006-1 PubMedCrossRefGoogle Scholar
  16. Gu K, Yang B, Tian D et al (2005) R gene expression induced by a type-III effector triggers disease resistance in rice. Nature 435:1122–1125. doi: 10.1038/nature03630 PubMedCrossRefGoogle Scholar
  17. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedCentralPubMedGoogle Scholar
  18. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 PubMedCrossRefGoogle Scholar
  19. Jones D, Jones J (1996) The roles of leucine-rich repeats in plant defenses. Adv Bot Res 89–167Google Scholar
  20. Katagiri F (2004) A global view of defense gene expression regulation—a highly interconnected signaling network. Curr Opin Plant Biol 7:506–511. doi: 10.1016/j.pbi.2004.07.013 PubMedCrossRefGoogle Scholar
  21. Kiernan JM, Wu FC, Goldberg KB et al (1993) Transformation in Nicotiana edwardsonii. In: Bajaj YPS (ed) Plant Protoplasts Genet Eng III. Springer, Berlin Heidelberg, pp 294–307CrossRefGoogle Scholar
  22. Kumar D, Patro S, Ranjan R et al (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS ONE 6:e24627. doi: 10.1371/journal.pone.0024627 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Kundu S, Chakraborty D, Pal A (2011) Proteomic analysis of salicylic acid induced resistance to mungbean yellow mosaic India virus in Vigna mungo. J Proteomics 74:337–349. doi: 10.1016/j.jprot.2010.11.012 PubMedCrossRefGoogle Scholar
  24. Lebel E, Heifetz P, Thorne L et al (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J Cell Mol Biol 16:223–233CrossRefGoogle Scholar
  25. Maiti S, Basak J, Kundagrami S et al (2011) Molecular marker-assisted genotyping of mungbean yellow mosaic India virus resistant germplasms of mungbean and urdbean. Mol Biotechnol 47:95–104. doi: 10.1007/s12033-010-9314-1 PubMedCrossRefGoogle Scholar
  26. Maiti S, Paul S, Pal A (2012) Isolation, characterization, and structure analysis of a non-TIR-NBS-LRR encoding candidate gene from MYMIV-resistant Vigna mungo. Mol Biotechnol 52:217–233. doi: 10.1007/s12033-011-9488-1 PubMedCrossRefGoogle Scholar
  27. Meyers BC, Kozik A, Griego A et al (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834PubMedCentralPubMedCrossRefGoogle Scholar
  28. Nimchuk Z, Eulgem T, Holt BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609. doi: 10.1146/annurev.genet.37.110801.142628 PubMedCrossRefGoogle Scholar
  29. Oldroyd GE, Staskawicz BJ (1998) Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci 95:10300–10305PubMedCentralPubMedCrossRefGoogle Scholar
  30. Puzio Lausen, Heinen Grundler (2000) Promoter analysis of pyk20, a gene from Arabidopsis thaliana. Plant Sci Int J Exp Plant Biol 157:245–255Google Scholar
  31. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  32. Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315PubMedCrossRefGoogle Scholar
  33. Schardl CL, Byrd AD, Benzion G et al (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11PubMedCrossRefGoogle Scholar
  34. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025. doi: 10.1038/nprot.2006.286 PubMedCrossRefGoogle Scholar
  35. Staiger D, Kaulen H, Schell J (1989) A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Proc Natl Acad Sci 86:6930–6934PubMedCentralPubMedCrossRefGoogle Scholar
  36. Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16:171–182. doi: 10.1101/gad.952102 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442. doi: 10.1016/j.pbi.2008.05.003 PubMedCrossRefGoogle Scholar
  38. Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Soumitra Maiti
    • 1
  • Sunita Patro
    • 1
  • Amita Pal
    • 2
  • Nrisingha Dey
    • 1
    Email author
  1. 1.Division of Gene Function and Regulation Institute of Life Sciences, Department of Biotechnology, Goverment of IndiaBhubaneswarIndia
  2. 2.Division of Plant BiologyBose Institute, P1/12 CIT Scheme-VIIMKolkataIndia

Personalised recommendations