Skip to main content
Log in

Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The effects of three periods of exposure (12, 24 and 48 h) to different levels of putrescine (0, 0.2, 0.5, 1.0, 2.0 and 5.0 mg l−1), as well as three incubation periods (24, 48 and 72 h) to different levels of cefotaxime and vancomycin (0, 50, 100, 200 and 500 mg l−1) on microspore embryogenesis of rapeseed cv. ‘Hyola 401’ were assessed. Microspore embryogenesis was enhanced about threefold compared with untreated culture following 48 h treatment with 0.2 mg l−1 putrescine. Putrescine treatment at 0.5 mg l−1 for 48 h effectively induced root formation and increased normal plantlet regeneration by 92 % when microspore-derived embryos (MDEs) were transferred to regeneration medium. The highest embryo yield (184.2 embryos Petri dish−1) was possible when induction medium was supplemented with 50 mg l−1 cefotaxime for 24 h and the highest normal regeneration was observed in cultures exposed to 50 and 100 mg l−1 at all durations tested. More abnormal MDEs (76 and 82 %) were observed when microspores treated with 200 and 500 mg l−1 cefotaxime many of which failed to regenerate normally and resulted in callusing. Vancomycin at 100 mg l−1 during the 48 h exposure increased the number of MDEs (181.6 embryos Petri dish−1) in contrast to untreated cultures (93.6 embryos Petri dish−1) but, normal plantlet regeneration decreased as vancomycin level increased and high callusing (84 and 90 %) was observed with 200 and 500 mg l−1 for 72 h. Microspore embryogenesis and plant regeneration could be improved by putrescine, cefotaxime and vancomycin when appropriate levels and durations of incubation were selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADC :

Arginine decarboxylase

DH:

Doubled haploid

ELS:

Embryo-like structure

GA3 :

Gibberellic acid

MDE:

Microspore-derived embryo

ODC :

Ornithine decarboxylase

References

  • Ahmadi B, Ghadimzadeh M, Moghaddam AF, Alizadeh K, Teixeira da Silva JA (2012a) Bud length, plating density, and incubation time on microspore embryogenesis in Brassica napus. Int J Veg Sci 18:346–357

    Article  Google Scholar 

  • Ahmadi B, Alizadeh K, Teixeira da Silva JA (2012b) Enhanced regeneration of haploid plantlets from microspores of Brassica napus L. using bleomycin, PCIB, and phytohormones. Plant Cell Tissue Organ Cult 109:525–533

    Article  CAS  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Teixeira da Silva JA (2014) Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell Tissue Organ Cult 116:343–351

    Article  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Ardebili SH, Shariatpanahi ME, Amiri R, Emamifar M, Nematzadeh G, Noori SAS, Oroojloo M, Heberle-Bors E (2011) Effect of 2,4-D as a novel inducer of embryogenesis in microspores of Brassica napus L. Czech J Genet Plant Breed 47:114–122

    CAS  Google Scholar 

  • Asif M, Eudes F, Randhawa H, Amundsen E, Yanke J, Spaner D (2013) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep 32:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Babbar BS, Agarwal PK, Sahay S, Bhojwani SS (2004) Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian J Biotechnol 3:185–202

    Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bangi N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  CAS  PubMed  Google Scholar 

  • Bhau BS, Wakhlu AK (2001) Effect of some antibiotics on the in vitro morphogenetic response from callus cultures of Coryphantha elephantidens. Biol Plant 4(1):19–24

    Article  Google Scholar 

  • Brew-Appiah RAT, Ankrah N, Liu W, Konzak CF, von Wettstein D, Rustgi A (2013) Generation of doubled haploid transgenic wheat lines by microspore transformation. PLoS One. doi:10.1371/journal.pone.0080155

    PubMed Central  PubMed  Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Rep 21:1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Chan SWL (2010) Chromosome engineering: power tools for plant genetics. Trends Biotechnol 28:650–710

    Article  Google Scholar 

  • Coventry J, Kott LS (1998) Doubled haploid technology for spring and winter Brassica napus, revised ed. OAC Publication, University of Guelph, Ontario, Canada. Technol Bull, p 42

  • Danilova SA, Dolgikh YI (2004) The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russ J Plant Physiol 51(4):559–562

    CAS  Google Scholar 

  • Dewi IS, Purwoko BS (2008) Role of polyamines in inhibition of ethylene biosynthesis and their effects on rice anther culture development. Indones J Agric Sci 9(2):60–67

    Google Scholar 

  • Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, Żur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma. doi:10.1007/s00709-014-0616-1

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tissue Organ Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AMR, Keller WA (2007) Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in Brassicaceae. In Vitro Cell Dev Biol Plant 43:348–355

    Article  CAS  Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. In: Janis J (ed) Plant Breed Rev. Wiley, New York 25:57–88

  • Gamborg OL, Miller RA, Ojima L (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Hammes WP, Neuhaus FC (1974) Mechanism of action of vancomycin—inhibition of peptidoglycan synthesis in Gaffkya homari. Antimicrob Agents Chemother 6:722–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holland L, Gemmell JE, Charity JA, Walter C (1997) Foreign gene transfer into Pinus radiate cotyledons by Agrobacterium tomefaciens. N Z J For Sci 27:289–304

    CAS  Google Scholar 

  • Hoseini M, Ghadimzadeh M, Ahmadi B, Teixeira da Silva JA (2014) Effects of ascorbic acid, alpha-tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-013-9579-8

    Google Scholar 

  • Kackar A, Shekhawat NS (2007) Plant regeneration through embryogenesis and polyamine levels in cultures of grasses of Thar Desert. J Cell Mol Biol 6(2):121–127

    Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kevers C, Gal NL, Monteiro M, Dommes J, Gaspar T (2000) Somatic embryogenesis for Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathway. Plant Growth Regul 31:209–214

    Article  CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollens of Brassica napus. Z Pflanzenphysiol 105:427–434

    Article  Google Scholar 

  • Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Mittal P, Gosal SS, Senger A, Kumar P (2009) Impact of cefotaxime on somatic embryogenesis and shoot regeneration in sugarcane. Physiol Mol Biol Plants 15(3):257–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP (2009) Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomics 9:311–323

    Article  PubMed Central  PubMed  Google Scholar 

  • Nauerby B, Billing Z, Wyndaele R (1997) Influence of antibiotic timentin on plant regeneration compared to carbenicillin and cefatoxime in concentrations suitable for elimination of Agrobacterium tomefaciens. Plant Sci 123:169–177

    Article  CAS  Google Scholar 

  • Panathula CS, Mahadev MDN, Naidu CV (2014) The stimulatory effect of the antimicrobial agents bavistin, cefotaxime and kanamycin on in vitro plant regeneration of Centella asiatica (L.)—an important antijaundice medicinal plant. Am J Plant Sci 5:279–285

    Article  Google Scholar 

  • Pius J, George L, Eapen S, Rao PS (1993) Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tissue Organ Cult 32:91–96

    Article  CAS  Google Scholar 

  • Prem D, Gupta K, Agnihotri A (2005) Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea L. Czern and Coss). In Vitro Cell Dev Biol Plant 41:266–273

    Article  Google Scholar 

  • Rakosy-Tican E, Aurori CM, Aurori A (2011) The effects of cefotaxime and silver thiosulphate on in vitro culture of Solanum chacoense. Rom Biotechnol Lett 16(4):6369–6377

    CAS  Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant cell Tissue Organ Cult 81:91–95

    Article  CAS  Google Scholar 

  • Sarma KS, Evans NE, Selby C (1995) Effect of carbenicillin and cefotaxime on somatic embryogenesis of Sitka spruce (Picea sitchensis (Bong.) Carr.). J Exp Bot 46:1779–1781

    Article  CAS  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    Article  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Simmonds JA, Grainger JL (1993) The toxicity of antibiotics to protoplast cultures of Triticum aestivum L. Plant Sci 89:209–214

    Article  CAS  Google Scholar 

  • Swanberg A, Dai W (2008) Plant regeneration of periwinkle (Catharanthus roseus) via organogenesis. Hortic Sci 43(3):832–836

    Google Scholar 

  • Takasaki T, Hatakeyama K, Ojima K, Watanabe M, Toriyama K, Hinata K (1996) Effects of various factors (hormone combinations, genotypes and antibiotics) on shoot regeneration from cotyledon explants in Brassica rapa L. Plant Tissue Cult Lett 13(2):177–180

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Fukai S (2001) The impact of carbencillin, cefotaxime and vancomycin on chrysanthemum and tobacco TCL morphogenesis and Agrobacterium growth. J Appl Hortic 3(1):3–12

    Google Scholar 

  • Tereso S, Miguel C, Maroco J, Oliveira MM (2006) Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation. Plant Cell Tissue Organ Cult 87:33–40

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Rekha KT, Jayabalan N, Praveen N, Kim EH, Chung IM (2013) Effect of exogenous polyamines enhances somatic embryogenesis via suspension cultures of spine guard (Momordica dioidca Roxb. ex. Wild). Australian. J Crop Sci 7(3):446–453

    CAS  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett 579:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Wu X-B, Wang J, Liu J-H, Deng X-X (2009) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wei ZM (2007) Influences of cefotaxime and carbenicillin on plant regeneration from wheat mature embryos. Biol Plant 52(3):553–556

    Article  Google Scholar 

  • Zhao J, Sun MX (2005) Influence of exogenous auxin on microspore embryogenesis in tobacco. Wuhan Bot Res 23(6):519–523

    CAS  Google Scholar 

  • Żur I, Dubas E, Krzewska M, Sanchez-Díaz RA, Castillo AM, Vallés MP (2014) Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (× Triticosecale Wittm.). Plant Cell Tissue Organ Cult 116:261–267

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Agricultural Biotechnology Research Institute of Iran (ABRII) Project No. 1-05-05-8601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran E. Shariatpanahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, B., Shariatpanahi, M.E., Ojaghkandi, M.A. et al. Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L.. Plant Cell Tiss Organ Cult 118, 497–505 (2014). https://doi.org/10.1007/s11240-014-0501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0501-9

Keywords

Navigation