Advertisement

Plant Cell, Tissue and Organ Culture (PCTOC)

, Volume 117, Issue 3, pp 373–380 | Cite as

Comparison of plant-based expression platforms for the heterologous production of geraniol

  • Nikolay VasilevEmail author
  • Christian Schmitz
  • Lemeng Dong
  • Anneli Ritala
  • Nicole Imseng
  • Suvi T. Häkkinen
  • Sander van der Krol
  • Regine Eibl
  • Kirsi-Marja Oksman-Caldentey
  • Harro Bouwmeester
  • Rainer Fischer
  • Stefan Schillberg
Original Paper

Abstract

We compared the ability of different plant-based expression platforms to produce geraniol, a key metabolite in the monoterpenoid branch of the terpenoid indole alkaloid biosynthesis pathway. A geraniol synthase gene isolated from Valeriana officinalis (VoGES) was stably expressed in different tobacco systems. Intact plants were grown in vitro and in the greenhouse and were used to generate cell suspension and hairy root cultures. VoGES was also transiently expressed in N. benthamiana. The highest geraniol content was produced by intact transgenic plants grown in vitro (48 μg/g fresh weight, fw), followed by the transient expression system (27 μg/g fw), transgenic plants under hydroponic conditions in the greenhouse and cell suspension cultures (16 μg/g fw), and finally hairy root cultures (9 μg/g fw). Differences in biomass production and the duration of cultivation resulted in a spectrum of geraniol productivities. Cell suspension cultures achieved a geraniol production rate of 1.8 μg/g fresh biomass per day, whereas transient expression produced 5.9 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is ignored) or 0.5 μg/g fresh biomass per day (if cultivation prior to agroinfiltration is included). The superior productivity, strict process control and simple handling procedures available for transgenic cell suspension cultures suggest that cells are the most promising system for further optimization and ultimately for the scaled-up production of geraniol.

Keywords

Cell suspension cultures Geraniol synthase Hydroponics Tobacco plants Valeriana officinalis 

Notes

Acknowledgments

This research was funded by the European Union Seventh Framework Programme SmartCell (Rational design of plant systems for sustainable generation of value-added industrial products, Grant agreement No. 222,716) and the EU COST Action FA1006 PlantEngine. VTT would like to acknowledge the technical assistance of Airi Hyrkäs, Siv Matomaa, Jaana Rikkinen, Mari Lämsä, Annika Majanen and Tuuli Teikari. We thank Dr. Richard Twyman for critical reading of the manuscript. None of the authors declare a conflict of interest.

Supplementary material

11240_2014_446_MOESM1_ESM.doc (138 kb)
Supplementary material 1 (DOC 138 kb)

References

  1. Abdel-Rahman FH, Alaniz NM, Saleh MA (2013) Nematicidal activity of terpenoids. J Environ Sci Health B 48:16–22PubMedCrossRefGoogle Scholar
  2. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FW, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ben Hsouna A, Hamdi N (2012) Phytochemical composition and antimicrobial activities of the essential oils and organic extracts from Pelargonium graveolens growing in Tunisia. Lipids Health Dis 11:167PubMedCrossRefGoogle Scholar
  4. Boukhris M, Simmonds MS, Sayadi S, Bouaziz M (2013) Chemical composition and biological activities of polar extracts and essential oil of rose-scented geranium, Pelargonium graveolens. Phytother Res 27:1206–1213PubMedCrossRefGoogle Scholar
  5. Colby SM, Alonso WR, Katahira EJ, Mcgarvey DJ, Croteau R (1993) 4 s-Limonene synthase from the oil glands of spearmint (Mentha spicata). J Biol Chem 268:23016–23024PubMedGoogle Scholar
  6. Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai N, Simon JE, Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25(8):899–901PubMedCrossRefGoogle Scholar
  7. De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V, Vanderhaeghen R, Hilson P, Hamill JD, Goossens A (2011) APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–1065PubMedCrossRefGoogle Scholar
  8. Dong L, Miettinen K, Goedbloed M, Verstappen FW, Voster A, Jongsma MA, Memelink J, Krol SV, Bouwmeester HJ (2013) Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization. Metab Eng 20:198–211PubMedCrossRefGoogle Scholar
  9. Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646PubMedCrossRefGoogle Scholar
  10. Elson CE, Underbakke GL, Hanson P, Shrago E, Wainberg RH, Qureshi AA (1989) Impact of lemongrass oil, an essential oil, on serum cholesterol. Lipids 24:677–679PubMedCrossRefGoogle Scholar
  11. Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892PubMedCrossRefGoogle Scholar
  12. Fischer MJ, Meyer S, Claudel P, Perrin M, Ginglinger JF, Gertz C, Masson JE, Werck-Reinhardt D, Hugueney P, Karst F (2013) Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems. J Biotechnol 163:24–29PubMedCrossRefGoogle Scholar
  13. Gang DR, Wang JH, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol 125(2):539–555PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gunata YZ, Bayonove CL, Baumes RL, Cordonnier RE (1985) The aroma of grapes.1. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J Chromatogr 331(1):83–90Google Scholar
  15. Guo ZG, Liu Y, Gong MZ, Chen W, Li WY (2013) Regulation of vinblastine biosynthesis in cell suspension cultures of Catharanthus roseus. Plant Cell Tiss Org 112:43–54CrossRefGoogle Scholar
  16. Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N (2013) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J 75:351–363PubMedCrossRefGoogle Scholar
  17. Häkkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkanen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A (2014) Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng 11:336–346CrossRefGoogle Scholar
  18. Höfer R, Dong L, Andre F, Ginglinger JF, Lugan R, Gavira C, Grec S, Lang G, Memelink J, Van Der Krol S, Bouwmeester H, Werck-Reichhart D (2013) Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway. Metab Eng 20:221–232PubMedCrossRefGoogle Scholar
  19. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ito M, Honda G (2007) Geraniol synthases from perilla and their taxonomical significance. Phytochemistry 68:446–453PubMedCrossRefGoogle Scholar
  21. Karousou R, Grammatikopoulos G, Lanaras T, Manetas Y, Kokkini S (1998) Effects of enhanced UV-B radiation on Mentha spicata essential oils. Phytochemistry 49:2273–2277CrossRefGoogle Scholar
  22. Kim SH, Park EJ, Lee CR, Chun JN, Cho NH, Kim IG, Lee S, Kim TW, Park HH, So I, Jeon JH (2012) Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 40:1683–1890PubMedGoogle Scholar
  23. Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204PubMedCrossRefGoogle Scholar
  24. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396PubMedCrossRefGoogle Scholar
  25. Lu S, Xu R, Jia JW, Pang JH, Matsuda SPT, Chen XY (2002) Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression. Plant Physiol 130:477–486PubMedCentralPubMedCrossRefGoogle Scholar
  26. Marcuzzi A, Pontillo A, De Leo L, Tommasini A, Decorti G, Not T, Ventura A (2008) Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. Pediatric Res 64(2):177–182CrossRefGoogle Scholar
  27. Marcuzzi A, Zanin V, Kleiner G, Monasta L, Crovella S (2013) Mouse model of mevalonate kinase deficiency: comparison of cytokine and chemokine profile with that of human patients. Pediatric Res 74(3):266–271CrossRefGoogle Scholar
  28. Misra LN, Wouatsa NA, Kumar S, Venkatesh Kumar R, Tchoumbougnang F (2013) Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. J Ethnopharmacol 148:74–80PubMedCrossRefGoogle Scholar
  29. Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Creche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574PubMedCrossRefGoogle Scholar
  30. Schnurr JA, Guerra DJ (2000) The CaMV-35S promoter is sensitive to shortened photoperiod in transgenic tobacco. Plant Cell Rep 19:279–282CrossRefGoogle Scholar
  31. Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guivarc’h N, Fischer MJ, Memelink J, Clastre M (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43PubMedCrossRefGoogle Scholar
  32. Sundberg SE, Ellington JJ, Evans JJ, Keys DA, Fisher JW (2003) Accumulation of perchlorate in tobacco plants: development of a plant kinetic model. J Environ Monit 5:505–512PubMedCrossRefGoogle Scholar
  33. van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS One 5(12):e14222. doi: 10.1371/journal.pone.0014222 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Vasilev N, Gromping U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method. Plant Biotechnol J 11:867–874PubMedCrossRefGoogle Scholar
  35. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956PubMedCrossRefGoogle Scholar
  36. Wong EY, Hironaka CM, Fischhoff DA (1992) Arabidopsis thaliana small subunitleader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol Biol 20(1):81–93PubMedCrossRefGoogle Scholar
  37. Yang T, Li J, Wang HX, Zeng Y (2005) A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry 66:285–293PubMedCrossRefGoogle Scholar
  38. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nikolay Vasilev
    • 1
    Email author
  • Christian Schmitz
    • 1
  • Lemeng Dong
    • 2
  • Anneli Ritala
    • 3
  • Nicole Imseng
    • 4
  • Suvi T. Häkkinen
    • 3
  • Sander van der Krol
    • 2
  • Regine Eibl
    • 4
  • Kirsi-Marja Oksman-Caldentey
    • 3
  • Harro Bouwmeester
    • 2
  • Rainer Fischer
    • 1
    • 5
  • Stefan Schillberg
    • 1
    • 6
  1. 1.Department Plant BiotechnologyFraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
  2. 2.Laboratory of Plant PhysiologyWageningen URWageningenThe Netherlands
  3. 3.VTT Technical Research Centre of FinlandEspooFinland
  4. 4.Institute of Biotechnology, Biochemical Engineering and Cell Cultivation TechniqueZurich University of Applied SciencesWädenswilSwitzerland
  5. 5.Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
  6. 6.Institute for Phytopathology and Applied ZoologyJustus-Liebig University GiessenGiessenGermany

Personalised recommendations