Skip to main content
Log in

Inorganic nitrogen uptake kinetics of sugarcane (Saccharum spp.) varieties under in vitro conditions with varying N supply

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An in vitro system was established for the characterisation of inorganic nitrogen uptake by sugarcane plantlets of variety NCo376. After multiplication and rooting, plantlets (0.27–0.3 g fresh mass) were placed on N-free medium for 4 days, and then supplied with 2–20 mM N as NO3 -N only, NH4 +-N only or NO3 -N + NH4 +-N (as 1:1). With few exceptions, on all the tested N media, the in vitro plants always had a higher Vmax for NH4 +-N (28.69–66.51 μmol g−1 h−1) than for NO3 -N uptake (10.24–30.19 μmol g−1 h−1) and the Km indicated a higher affinity for NO3 -N (0.02–7.38 mM) than for NH4 +-N (0.06–9.15 mM). When N was applied as 4 and 20 mM to varieties N12, N19 and N36, the interaction between variety, N form and concentration resulted in differences in the Vmax and Km. The high N-use efficient varieties (N12 and N19), as determined in previous pot and field trials, behaved similarly under all tested conditions and displayed a lower Vmax and Km than the low N-use efficient ones (NCo376 and N36). Based on this finding, it was suggested that the N-use efficient designation (from pot and field trials) may not be ascribed solely to N uptake. Assessment of the relative preference index (RPI) for NO3 -N and NH4 +-N uptake revealed that, at present, the RPI has no application in sugarcane due to its preferential uptake of NH4 +-N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azevedo Santos L, Almeida Santos W, Sperandio VL, Bucher CA, de Souza SR, Fernandes MS (2011) Nitrate uptake kinetics and metabolic parameters in two rice varieties grown in high and low nitrate. J Plant Nutr 34:988–1002

    Article  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Young VL (1975) Rapid colourimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:61–70

    Article  Google Scholar 

  • Cerezo M, Camañes G, Flors V, Primo-Millo E, García-Agustín P (2007) Regulation of nitrate transport in citrus rootstocks depending on nitrogen availability. Plant Signal Behav 2:337–342

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandna R, Hakeem KR, Khan F, Ahmad A, Iqbal M (2012) Variability of nitrogen uptake and assimilation among N-efficient and N-inefficient wheat (Triticum aestivum L.) genotypes. J Plant Interact 7:367–375

    Article  CAS  Google Scholar 

  • Chopin F, Orsel M, Dorbe MF, Chardon F, Truong HN, Miller AJ, Krapp A, Daniel-Vedele F (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19:1590–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • de Armas R, Valadier MH, Champigny ML, Lamaze T (1992) Influence of ammonium and nitrate on the growth and photosynthesis of sugarcane. J Plant Physiol 140:531–535

    Article  Google Scholar 

  • Dong S, Scagel CF, Cheng L, Fuchigami LH, Rygiewicz PT (2001) Soil temperature and plant growth stage influences nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiol 21:541–547

    Article  CAS  PubMed  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Epstein E (1972) Mineral Nutrition of Plants. John Wiley and Sons Incorporated, New York

    Google Scholar 

  • Epstein E, Bloom AAJ (2004) Mineral nutrition of plants: principles and perspectives. Sinauer Associates Incorporated, Sunderland

    Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53:203–224

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Willem Erisman J, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Garnett TP, Shabala SN, Smethurst PJ, Newman IA (2003) Kinetics of ammonium and nitrate uptake by eucalyptus roots and associated proton fluxes measured using ion selective microelectrodes. Funct Plant Biol 30:1165–1176

    Article  CAS  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninneman O, Frommer W, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert PM, Lipschultz F, McCarthy JJ, Altabet MA (1982) Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol Oceanogr 27:639–650

    Article  Google Scholar 

  • Glass ADM, Shaff JE, Kochian LV (1992) Studies of the uptake of nitrate in barley. Plant Physiol 99:456–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  PubMed  Google Scholar 

  • Good A, Shrawat A, Muench D (2004) Can less yield more? Are reducing nutrient inputs into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Goyal SS, Huffaker RC (1986) The uptake of NO3 , NO2 , and NH4 + by intact wheat (Triticum aestivum) seedlings. Plant Physiol 82:1051–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hageman RH, Reed AJ (1980) Nitrate reductase from higher plants. Method Enzymol 69:273–274

    Google Scholar 

  • Hawkins BJ, Robbins S (2010) pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots. Physiol Plantarum 138:238–247

    Article  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis of nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirel B, Tétu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Analysis of 13NH4 + efflux in spruce roots: a test case for phase identification in compartmental analysis. Plant Physiol 109:481–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronzucker HJ, Glass ADM, Siddiqi MY (1999) Inhibition of nitrate uptake by ammonium in barley: analysis of component fluxes. Plant Physiol 120:283–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Whiteledge TE (2005) Primary and new production in the deep Canada Basin during summer 2002. Polar Biol 28:190–197

    Article  Google Scholar 

  • Masclaux-Daubrese C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1–17

    Article  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JJ, Taylor WR, Taft JL (1977) Nitrogenous nutrition of the plankton in the Chesapeake Bay: nutrient availability and phytoplankton preferences. Limnol Oceanogr 22:996–1011

    Article  CAS  Google Scholar 

  • Meyer JH, Schumann AW, Wood RA, Nixon DJ, van den Berg M (2007) Recent advances to improve nitrogen use efficiency of sugarcane in the South African Sugar Industry. Proc Int Soc Sugar Cane Technol 26:238–245

    Google Scholar 

  • Miller AJ, Cramer MD (2004) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Biol 47:843–854

    CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Muñoz F, Franco CM, López J, Riascos JJ (2013) Hydorponic evaluation of the effect of NO3–N/NH4–N ratio on the growth of sugarcane plantlets. Proc Int Soc Sugar Cane Technol 28:1–4

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Phillips JC, Hurd CL (2003) Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Mar Ecol Prog Ser 264:31–48

    Article  Google Scholar 

  • Ramgareeb S, Snyman SJ, van Antwerpen T, Rutherford RS (2010) Elimination of virus and rapid propagation of disease-free sugarcane (Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell Tissue Organ Cult 100:175–181

    Article  Google Scholar 

  • Robinson N, Fletcher A, Whan A, Critchely C, von Wirén N, Lakshmanan P, Schmidt S (2007) Sugarcane genotypes differ in internal nitrogen use efficiency. Funct Plant Biol 34:1122–1129

    Article  CAS  Google Scholar 

  • Robinson N, Brackin R, Vinall K, Soper F, Gamage H, Paungfoo-Lonhienne C, Rennenberg H, Lakshmanan P, Schmidt S (2011) Nitrate paradigm does not hold up for sugarcane. PLoS ONE 6:1–9

    Google Scholar 

  • Roycewicz P, Malamy JE (2012) Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Phil Trans R Soc B 367:1489–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rroco E, Mendel K (2000) N losses from entire plants of spring rice (Oryza sativa L.) from tillering to maturation. Eur J Agron 13:101–110

    Article  CAS  Google Scholar 

  • Ruan J, Gerendàs J, Härdter R, Sattelmacher B (2007) Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann Bot 99:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scheiner D (1976) Determination of ammonia and kjeldahl nitrogen by indol–phenol method. Water Res 10:31–36

    Article  CAS  Google Scholar 

  • Schumann AW (2000) Prospects for improving nitrogen fertiliser use efficiency with a new soil test and ammonia volatilisation model. Proc S Af Sug Technol Ass 74:70–78

    Google Scholar 

  • Schumann AW, Meyer JH, Nair D (1998) Evidence for different nitrogen use efficiencies of selected sugarcane varieties. Proc Int Soc Sugar Cane Technol 72:72–80

    Google Scholar 

  • Segonzac C, Boyer J-C, Ipotesi E, Szponarski W, Tilard P, Touraine B, Sommerer N, Rossignol M, Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stolte W, Riegman R (1996) The relative preference index (RPI) for phytoplankton nitrogen use is only weakly related to physiological preference. J Plankton Res 18:1041–1045

    Article  Google Scholar 

  • Subasinghe R (2006) Effect of nitrogen and potassium stress and cultivar differences on potassium ions and nitrate uptake in sugarcane. J Plant Nutr 29:809–825

    Article  CAS  Google Scholar 

  • Sweby DL, Huckett BI, Watt MP (1994) Effects of nitrogen nutrition on salt-stressed Nicotiana tabacum var. Samsun in vitro plantlets. J Exp Bot 45:995–1008

    Article  CAS  Google Scholar 

  • Tognetti JA, Pontis HG, Martínez-Noël GMA (2013) Sucrose signaling in plants: a world yet to be explored. Plant Signal Behav 8:e23316

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y–Y, Hsu P-K, Tsay Y-F (2012) Uptake, allocation and signalling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Weigel A, Meyer JH, Moodley S (2010) Nitrogen responses and nitrogen use efficiency of four sugarcane varieties in Mpumalanga. Proc S Afr Sug Technol Ass 83:216–220

    Google Scholar 

  • Yang YY, Li XH, Ratcliffe RG, Ruan JY (2013) Characterization of ammonium and nitrate uptake and assimilation in roots of tea plants. Russ J Plant Physiol 60:91–99

    Article  CAS  Google Scholar 

  • Youngdahl LJ, Pachecho R, Street JJ, Vlek PLG (1982) The kinetics of ammonium and nitrate uptake by young rice plants. Plant Soil 69:225–232

    Article  CAS  Google Scholar 

  • Zhang D, Ma F, Zhao Y, Li C (2004) Influence of different NO3 /NH4 + on nitrate and ammonium uptake kinetics of sugar beet (Beta vulgaris L.) seedlings. Nat Sci 2:70–78

    Google Scholar 

Download references

Acknowledgments

We acknowledge and thank the South African Sugarcane Research Institute, University of KwaZulu-Natal and the National Research Foundation of South Africa (Grants 85573 and 85414) for funding. E. Hajari is grateful to the College of Agriculture, Engineering and Science for a postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliosha Hajari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajari, E., Snyman, S.J. & Watt, M.P. Inorganic nitrogen uptake kinetics of sugarcane (Saccharum spp.) varieties under in vitro conditions with varying N supply. Plant Cell Tiss Organ Cult 117, 361–371 (2014). https://doi.org/10.1007/s11240-014-0445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0445-0

Keywords

Navigation