Skip to main content
Log in

Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Axillary buds from greenhouse-grown plants of Rosa chinensis ‘Old Blush’ were successfully used to establish cryopreservation protocols using both droplet-vitrification and encapsulation-dehydration methods. In droplet vitrification, regrowth occurred after exposure to liquid nitrogen even without pre-culture in the loading solution (LS) before immersion in the plant vitrification solution 2 (PVS2). However, a 20–80 min LS step followed by a short immersion in PVS2 for 3 or 15 min, at 0 °C gave the best regrowth rates (82–86 %). In encapsulation dehydration, the level of dehydration significantly influenced shoot regrowth. The best regrowth rate, 60 %, was obtained at a bead water content of 0.35 g water per g dry weight. These results demonstrate the possibility of using greenhouse plants of rose for cryopreservation by droplet vitrification and encapsulation dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barraco G, Sylvestre I, Engelmann F (2011) Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic 130:320–324

    Article  CAS  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Chen XL, Li JH, Xin X, Zhang ZE, Xin PP, Lu XX (2011) Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. S Afr J Bot 77:397–403

    Article  Google Scholar 

  • Condello E, Caboni E, Andre E, Piette B, Druart P, Swennen R, Panis B (2011) Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters 32:175–185

    CAS  PubMed  Google Scholar 

  • Dumet D, Grapin A, Bailly C, Dorion N (2002) Revisiting crucial steps of an encapsulation/desiccation based cryopreservation process: importance of thawing method in the case of Pelargonium meristems. Plant Sci 163:1121–1127

    Article  CAS  Google Scholar 

  • Engelman F (2011) Encapsulation-dehydration for cryopreservation: past, present and future. Acta Hortic 908:165–171

    Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot-tips. CryoLetters 11:413–426

    Google Scholar 

  • Fahy GM, Macfarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    Article  CAS  PubMed  Google Scholar 

  • Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370

    Google Scholar 

  • Gallard A, Panis B, Dorion N, Swennen R, Grapin A (2008) Cryopreservation of Pelargonium apices by droplet-vitrification. CryoLetters 29:243–251

    PubMed  Google Scholar 

  • Gallard A, Mallet R, Chevalier M, Grapin A (2011) Limited elimination of two viruses by cryotherapy of Pelargonium apices related to virus distribution. CryoLetters 32:111–122

    CAS  PubMed  Google Scholar 

  • Grapin A, Hupel C, Marche C, Dorion N (2001) First results of Pelargonium shoot apex cryopreservation. Acta Hortic 560:157–160

    Google Scholar 

  • Grapin A, Dumet D, Holota H, Dorion N (2003) Cryopreservation of Pelargonium shoot tips by encapsulation-dehydration: effects of sucrose concentration, dehydration duration and genotype. Acta Hortic 623:225–230

    Google Scholar 

  • Green J, Grout B (2010) Direct cryopreservation of winter buds of nine cultivars of blackcurrant (Ribes nigrum L.). CryoLetters 31:341–346

    PubMed  Google Scholar 

  • Gupta S, Reed BM (2006) Cryopreservation of shoot tips of blackberry and raspberry by encapsulation-dehydration and vitrification. CryoLetters 27:29–42

    PubMed  Google Scholar 

  • Guyader A, Guisnel R, Simonneau F, Rocand B, Le Bras C, Grapin A, Chatelet P, Dussert S, Engelmann F, Feugey L (2012) First results on cryopreservation by dormant bud technique of a set of Malus and Pyrus cultivars from the INRA Biological Resources Centre. In: Grapin A, Keller ERJ, Lynch PT, Panis B, Revilla A, Engelmann F (ed) Cryopreservation of crop species in Europe: proceeding COST action 871 final meeting, Angers, 8–11 Feb. 2011, OPOCE, Luxembourg, pp 141–144

  • Halmagyi A, Pinker I (2006) Plant regeneration from Rosa shoot tips cryopreserved by a combined droplet vitrification method. Plant Cell, Tissue Organ Cult 84:145–153

    Article  Google Scholar 

  • Keller ERJ, Kaczmarczyk A, Senula A (2008) Cryopreservation for plant genebanks—a matter between high expectations and cautious reservation. CryoLetters 29:53–62

    Google Scholar 

  • Kim HH, Lee SC (2012) Personalisation of droplet-vitrification protocols for plant cells: a systematic approach to optimising chemical and osmotic effects. CryoLetters 33:271–279

    CAS  PubMed  Google Scholar 

  • Kim HH, Lee YG, Shin DJ, Ko HC, Gwag JG, Cho EG, Engelmann F (2009) Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters 30:320–334

    CAS  PubMed  Google Scholar 

  • Kim HH, Popova E, Shin DJ, Yi JY, Kim CH, Lee JS, Yoon MK, Engelmann F (2012) Cryobanking of korean Allium germplasm collections: results from a 10 year experience. CryoLetters 33:45–57

    CAS  PubMed  Google Scholar 

  • Liu YG, Wang XY, Liu LX (2004) Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci 166:677–685

    Article  CAS  Google Scholar 

  • Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. CryoLetters 29:7–14

    PubMed  Google Scholar 

  • Lynch PT, Harris WC, Chartier-Hollis JM (1996) The cryopreservation of shoot tips of Rosa multiflora. Plant Growth Regul 20:43–45

    Article  CAS  Google Scholar 

  • Makowska Z, Keller J, Engelmann F (1999) Cryopreservation of apices isolated from garlic (Allium sativum L.) bulbils and cloves. CryoLetters 20:175–182

    Google Scholar 

  • Mandal BB, Dixit-Sharma S (2007) Cryopreservation of in vitro shoot tips of Dioscorea deltoidea Wall, an endangered medicinal plant: effect of cryogenic procedure and storage duration. CryoLetters 28:460–470

    CAS  PubMed  Google Scholar 

  • Marchant R, Power JB, Davey MR, Chartier-Hollis JM, Lynch PT (1993) Cryopreservation of pollen from 2 rose cultivars. Euphytica 66:235–241

    Article  Google Scholar 

  • Marco-Medina A, Casas JL, Gonzalez-Benito ME (2010) Comparison of vitrification and encapsulation-dehydration for cryopreservation of Thymus moroderi shoot tips. CryoLetters 31:301–309

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Sakai A (2003) Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a two-step vitrification protocol. Euphytica 131:299–304

    Article  CAS  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Mochida K, Itamura H, Sakai A (2001) Cryopreservation of persimmon (Diospyros kaki Thunb.) by vitrification of dormant shoot tips. Plant Cell Rep 20:398–402

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niwata E (1995) Cryopreservation of apical meristems of garlic (Allium sativum L.) and high subsequent plant regeneration. CryoLetters 16:102–107

    Google Scholar 

  • Padro MDA, Frattarelli A, Sgueglia A, Condello E, Damiano C, Caboni E (2012) Cryopreservation of white mulberry (Morus alba L.) by encapsulation-dehydration and vitrification. Plant Cell, Tissue Organ Cult 108:167–172

    Article  CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Panis B, Piette B, Andre E, Van den Houwe I, Swennen R (2011) Droplet vitrification: the first generic cryopreservation protocol for organized plant tissues? Acta Hortic 908:157–163

    Google Scholar 

  • Pawlowska B, Bach A (2011) Cryopreservation by encapsulation-dehydration of in vitro grown shoot buds of Rosa ‘New Dawn’. Acta Hortic 908:303–307

    CAS  Google Scholar 

  • Pawlowska B, Burnog D, Szewczyk-Taranek B (2012) Survival of Rosa canina and Rosa rubiginosa meristems after cryopreservation by the droplet-vitrification method. In: Grapin A, Keller ERJ, Lynch PT, Panis B, Revilla A, Engelmann F (ed) Cryopreservation of crop species in Europe: proceedings COST action 871 final meeting, Angers, 8–11 Feb. 2011, OPOCE, Luxembourg, pp 157–159

  • Rabba’a MM, Shibli RA, Shatnawi MA (2012) Cryopreservation of Teucrium polium L. shoot-tips by vitrification and encapsulation-dehydration. Plant Cell, Tissue Organ Cult 110:371–382

    Article  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis osb var Brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Sant R, Panis B, Taylor M, Tyagi A (2008) Cryopreservation of shoot-tips by droplet-vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell, Tissue Organ Cult 92:107–111

    Article  Google Scholar 

  • Towill LE, Forsline PL (1999) Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant vegetative bud method. CryoLetters 20:215–222

    Google Scholar 

  • Towill LE, Widrlechner M (2004) Cryopreservation of Salix species using sections from winter vegetative scions. CryoLetters 25:71–80

    PubMed  Google Scholar 

  • Towill LE, Forsline PL, Walters C, Waddell J, Laufmann J (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. CryoLetters 25:323–334

    PubMed  Google Scholar 

  • Volk GM, Waddell J, Bonnart R, Towill L, Ellis D, Luffman M (2008) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. CryoLetters 29:89–94

    CAS  PubMed  Google Scholar 

  • Volk GM, Bonnart R, Waddell J, Widrlechner MP (2009) Cryopreservation of dormant buds from diverse Fraxinus species. CryoLetters 30:262–267

    CAS  PubMed  Google Scholar 

  • Volk GM, Bonnart R, Krueger R, Lee R (2012) Cryopreservation of Citrus shoot tips using micrografting for recovery. CryoLetters 33:418–426

    CAS  PubMed  Google Scholar 

  • Wissemann V (2003) Conventional taxonomy of wild roses. In: Roberts A, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, London, pp 111–117

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Tatiana Thouroude for the transfer of the first ‘Old Blush’ cuttings, Linda Voisine for her participation in the preliminary tests on medium culture, Daniel Relion for his technical help in maintaining the greenhouse-grown rosebushes and the INEM team for greenhouse supervision. The authors are also very grateful to D. Goodfellow for reviewing the English manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Grapin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bras, C., Le Besnerais, PH., Hamama, L. et al. Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration. Plant Cell Tiss Organ Cult 116, 235–242 (2014). https://doi.org/10.1007/s11240-013-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0400-5

Keywords

Navigation