Skip to main content
Log in

Recent advances in genetic engineering for improvement of fruit crops

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Fruits are one of the major sources of vitamins, essential nutrients, antioxidants and fibers in human diet. During the last two–three decades, genetic engineering methods based on the use of transgenes have been successfully adopted to improve fruit plants and focused mainly on enhanced tolerance to biotic and abiotic stresses, increased fruit yield, improved post harvest shelf life of fruit, reduced generation time and production of fruit with higher nutritional value. However, the development of transgenic fruit plants and their commercialization are hindered by many regulatory and social hurdles. Nowadays, new genetic engineering approaches i.e. cisgenesis or intragenesis receive increasing interest for genetic modification of plants. The absence of selectable marker gene in the final product and the introduced gene(s) derived from the same plant or plants sexually compatible with the target crop should increase consumer’s acceptance. In this article, we attempt to summarize the recent progress achieved on the genetic engineering in fruit plants and their applications in crop improvement. Challenges and opportunities for the deployment of genetic engineering in crop improvement programs of fruit plants are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Rev Biotechnol 30:161–175

    CAS  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Quaint F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    CAS  PubMed  Google Scholar 

  • Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schroder R, Johnston JW, Schaffer RJ (2012) Down-regulation of polygalacturonase 1 alters firmness, tensile strength and water loss in apple (Malus × domestica) fruit. BMC Plant Biol 12:129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballester A, Cervera M, Pena L (2010) Selectable marker-free transgenic orange plants recovered under non-selective conditions and through PCR analysis of all regenerants. Plant Cell Tissue Organ Cult 102:329–336

    CAS  Google Scholar 

  • Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P (2010) Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv 28:94–107

    CAS  PubMed  Google Scholar 

  • Barbosa-Mendes JM, Mourao Filho FAA, Filho AB, Harakava R, Beer SV, Mendes BMJ (2009) Genetic transformation of Citrus sinensis cv. hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic 122:109–115

    CAS  Google Scholar 

  • Basson CE, Groenewald JH, Kossmann J, Cronje C, Bauer R (2011) Upregulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry. Transgenic Res 20:925–931

    CAS  PubMed  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    CAS  PubMed  Google Scholar 

  • Bergonzi S, Albani MC (2011) Reproductive competence from an annual and a perennial perspective. J Exp Bot 62:4415–4422

    CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    CAS  PubMed  Google Scholar 

  • Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892

    CAS  PubMed  Google Scholar 

  • Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    CAS  PubMed  Google Scholar 

  • Bleecker A, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115

    CAS  Google Scholar 

  • Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 10:390–397

    CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    CAS  PubMed  Google Scholar 

  • Cardoso SC, Barbosa-Mendes JM, Boscariol-Camargo RL, Christiano RSC, Filho AB, Vieira MLC, Mendes BMJ, Mourão Filho FAA (2010) Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Mol Biol Rep 28:185–192

    CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002

    PubMed  Google Scholar 

  • Cervera M, Esteban O, Gil M, Gorris MT, Martinez MC, Pena L, Cambra M (2010) Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza confers virus resistance. Transgenic Res 19:1001–1015

    CAS  PubMed  Google Scholar 

  • Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    CAS  PubMed  Google Scholar 

  • Coninck BD, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biol Rev 26:109–120

    Google Scholar 

  • Conklin P, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset senescence. Plant Cell Environ 27:959–970

    CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Plant Biotechnol J 2:83–90

    CAS  Google Scholar 

  • Das M, Chauhan H, Chhibbar A, Haq QMR, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246

    CAS  PubMed  Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of b-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    CAS  PubMed  Google Scholar 

  • de Campos MKF, de Carvalho K, de Souza FS (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Google Scholar 

  • de Carvalho K, de Campos MK, Domingues DS, Pereira LF, Vieira LG (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep 40:3269–3279

    CAS  PubMed  Google Scholar 

  • Dhekney SA, Litz RE, Moraga DA, Yadav AK (2007) Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cell Dev Biol Plant 43:195–202

    CAS  Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466

    CAS  Google Scholar 

  • Duan YX, Fan J, Guo WW (2010) Regeneration and characterization of transgenic kumquat plants containing the Arabidopsis APETALA1 gene. Plant Cell Tissue Organ Cult 100:273–281

    CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419

    CAS  PubMed  Google Scholar 

  • Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, García-Martinez JL, Pena L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58:1407–1420

    CAS  PubMed  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206

    CAS  Google Scholar 

  • Farre G, Twyman RM, Zhu C, Capell T, Christou P (2011) Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Curr Opin Biotechnol 22:245–251

    CAS  PubMed  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V (2007) Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed 126:137–145

    CAS  Google Scholar 

  • Flachowsky H, Richter K, Kim WS, Geider K, Hanke MV (2008) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 153:345–355

    CAS  Google Scholar 

  • Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    CAS  PubMed  Google Scholar 

  • Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, Hanke MV (2012) The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol 32:1288–1301

    CAS  PubMed  Google Scholar 

  • Fu XZ, Ehsan UK, Hu SS, Fan QJ, Liu JH (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74C:106–113

    Google Scholar 

  • Fuchs M, Cambra M, Capote N, Jelkmann W, Kundu J, Laval V, Martelli GP, Minafra A, Petrovic N, Pfieffer P, Pompe-Nocak M, Ravelonandro M, Sldarelli P, Stussi-Garaud C, Vigne E, Zagrai I (2007) Safety assessment of transgenic plums and grapevines expressing viral coat protein genes: new insights into real environmental impact of perennial plants engineered for virus resistance. J Plant Pathol 89:5–12

    CAS  Google Scholar 

  • Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181

    CAS  PubMed  Google Scholar 

  • Garcia-Gago JA, Pose S, Munoz-Blanco J, Quesada MA, Mercado JA (2009) The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening. Plant Signal Behav 4:766–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geier T, Eimert K, Scherer R, Nickel C (2008) Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell Tissue Organ Cult 94:269–280

    Google Scholar 

  • Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult 86:131–146

    Google Scholar 

  • Germana MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104:283–300

    Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7(6):e39557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K, Knulst AC, Bosch D, Van de Weg WE, Van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369

    CAS  PubMed  Google Scholar 

  • Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449

    Google Scholar 

  • Grosser JW, Calovic M, Louzada ES (2010) Protoplast fusion technology—somatic hybridization and cybridization. In: Davey MR, Anthony P (eds) Plant cell culture: essential methods. Wiley, New York, pp 175–198

    Google Scholar 

  • Hanhineva K, Kokko H, Siljanen H, Rogachev I, Aharoni A, Karenlampi SO (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). J Exp Bot 60:2093–2106

    CAS  PubMed  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    CAS  PubMed  Google Scholar 

  • He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    CAS  PubMed  Google Scholar 

  • He YR, Chen SC, Peng AH, Zou XP, Xu LZ, Lei TG, Liu XF, Yao LX (2011) Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds. Sci Hortic 128:99–107

    CAS  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    CAS  PubMed  Google Scholar 

  • Hernandez M, Cabrera-Ponce JL, Fragoso G, Lopez-Casillas F, Guevara-Garcıa A, Rosas G, Leon-Ramırez C, Juarez P, Sanchez-Garcıa G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252–4260

    CAS  PubMed  Google Scholar 

  • Herzog K, Flachowsky H, Deising HB, Hanke MV (2012) Heat shock-mediated elimination of the nptII marker gene in transgenic apple (Malus × domestica Borkh.). Gene 498(1):41–49

    CAS  PubMed  Google Scholar 

  • Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria × ananassa Duch.) plants. Indian J Biotechnol 7:465–472

    CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2009) Cisgenesis: an important sub-invention for traditional plant breeding companies. Euphytica 170:235–247

    Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tissue Organ Cult 97:187–196

    CAS  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants, vol 2. Springer, Berlin, pp 67–132

    Google Scholar 

  • Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription Factors AtDREB1b. HortScience 44:35–39

    Google Scholar 

  • Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J Exp Bot 60:2689–2699

    CAS  PubMed  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Kim SC, Song KJ, Kim HB, Kim IJ, Song EY, Chun SJ (2010) Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward). Plant Cell Rep 29:1339–1349

    CAS  PubMed  Google Scholar 

  • Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56

    CAS  PubMed  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar BBS, Ganapathi TR, Revathi CJ, Srinvas L, Bapat VA (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta 222:484–493

    CAS  PubMed  Google Scholar 

  • Kung YJ, Bau HJ, Wu YL, Chen TM, Su WC, Yeh SD (2009) Generation of transgenic papaya resistant to Papaya ringspot virus and Papaya leaf distortion mosaic virus. Phytopathology 99:1312–1320

    CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    CAS  PubMed  Google Scholar 

  • Landi L, Capocasa F, Costantini E, Mezzetti B (2009) ROLC strawberry plant adaptability, productivity, and tolerance to soil-borne disease and mycorrhizal interactions. Transgenic Res 18:933–942

    CAS  PubMed  Google Scholar 

  • Lau JM, Korban SS (2010) Transgenic apple expressing an antigenic protein of the human respiratory syncytial virus. J Plant Physiol 167:920–927

    CAS  PubMed  Google Scholar 

  • Lee JK, Kim IJ (2011) Modulation of fruit softening by antisense suppression of endo-β-1, 4-glucanase in strawberry. Mol Breed 27:375–383

    CAS  Google Scholar 

  • Li YH, Zhang YZ, Feng FJ, Liang D, Cheng LL, Ma FW, Shi SG (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult 102:337–345

    CAS  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    PubMed Central  PubMed  Google Scholar 

  • Litz RE, Padilla G (2012) Genetic transformation of fruit trees. In: Priyadarshan PM, Schnell RJ (eds) Genomics of tree crops. Springer, Berlin, pp 117–153

    Google Scholar 

  • Lopez-Gomez R, Cabrera-Ponce JL, Saucedo-Arias LJ, Carreto-Montoya L, Villanueva-Arce R, Diaz-Perez JC, Gomez-Lim MA, Herrera-Estrella L (2009) Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 18:89–97

    CAS  PubMed  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:1568–1580

    CAS  PubMed  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL, Flaishman MA, Gidoni D, Aldwinckle HS (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433

    Google Scholar 

  • Manimaran P, Ramkumar G, Sakthivel K, Sundaram RM, Madhav MS, Balachandran SM (2011) Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects. Biotechnol Adv 29:703–714

    CAS  PubMed  Google Scholar 

  • Matas AJ, Gapper NE, Chung MY, Giovannoni JJ, Rose JKC (2009) Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr Opin Biotechnol 20:197–203

    CAS  PubMed  Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jpn Soc Hortic Sci 78:410–416

    CAS  Google Scholar 

  • Mercado JA, Martin-Pizarro C, Pascual L, de los Santos B, Romero F, Quesada MA, Pliego-Alfaro F, Galvez J, Rey M, de la Vina G, Llobell A, Yubero-Serrano EM, Munoz-Blanco J, Caballero JL (2007) Evaluation of tolerance of Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Hortic 738:383–388

    Google Scholar 

  • Mercado JA, Trainotti L, Jimenez-Bermudez L, Santiago-Domenech N, Pose S, Donolli R, Barcelo M, Quesada MA (2010) Evaluation of the role of the endo-β-(1,4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biol Tech 55:8–14

    CAS  Google Scholar 

  • Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mlalazi B, Welsch R, Namanya P, Khanna H, Geijskes RJ, Harrison MD, Harding R, Dale JL, Bateson M (2012) Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. Planta 236:1585–1598

    CAS  PubMed  Google Scholar 

  • Molesini B, Pii Y, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30:80–88

    CAS  PubMed  Google Scholar 

  • Mondal SN, Dutt M, Grosser JW, Dewdney MM (2012) Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoe fawcettii. Eur J Plant Pathol 133:391–404

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma PVSRN, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    CAS  PubMed  Google Scholar 

  • Nookaraju A, Agrawal DC (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew. Plant Cell Tissue Organ Cult 111:15–28

    CAS  Google Scholar 

  • Nookaraju A, Upadhyaya CP, Pandey SK, Young KE, Hong SJ, Park SK, Park SW (2010) Molecular approaches for enhancing sweetness in fruits and vegetables. Sci Hortic 127:1–15

    CAS  Google Scholar 

  • Park JI, Lee YK, Chung WI, Lee IH, Choi JH, Lee WM, Ezura H, Lee SP, Kim IJ (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP-glucose pyrophosphorylase. Mol Breed 17:269–279

    CAS  Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686

    CAS  PubMed  Google Scholar 

  • Pena L, Seguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    CAS  PubMed  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    CAS  PubMed  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    CAS  PubMed  Google Scholar 

  • Petri C, Webb K, Hily JM, Dardick C, Scorza R (2008) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed 22:581–591

    CAS  Google Scholar 

  • Petri C, Hily JM, Vann C, Dardick C, Scorza R (2011) A high-throughput transformation system allows the regeneration of marker-free plum plants (Prunus domestica). Ann Appl Biol 159:302–315

    Google Scholar 

  • Petri C, Lopez-Noguera S, Wang H, Garcia-Almodovar C, Alburquerque N, Burgos L (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tissue Organ Cult 110:337–346

    CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can J Plant Pathol 23:216–235

    CAS  Google Scholar 

  • Qin YH, Teixeira da Silva JAT, Zhang LX, Zhang SL (2008) Transgenic strawberry: state of the art for improved traits. Biotechnol Adv 26:219–232

    CAS  PubMed  Google Scholar 

  • Quesada MA, Blanco-Portales R, Pose S, Garcia-Gago JA, Jimenez-Bermudez S, Munoz-Serrano A, Caballero JL, Pliego-Alfaro F, Mercado JA, Munoz-Blanco J (2009) Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol 150:1022–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raharjo SHT, Witjaksono, Padilla G, Gomez-Lim MA, Litz RE (2008) Recovery of avocado (Persea americana Mill.) plants transformed with the antifungal plant defensin gene pdf 1.2. In Vitro Cell Dev Biol Plant 44:254–262

  • Rai MK, Akhtar N, Jaiswal VS (2007) Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Sci Hortic 113:129–133

    CAS  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    PubMed  Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees-Struct Funct 24:1–12

    CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98

    Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    CAS  PubMed  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension of traditional plant breeding. Trends Plant Sci 12:397–403

    CAS  PubMed  Google Scholar 

  • Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB Plants 5:pls047. doi:10.1093/aobpla/pls047

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, Malinowski T, Zagrai I, Cambra M, Kamenova I (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tissue Organ Cult 115:1–12

    CAS  Google Scholar 

  • Seymour GB, Chapman NH, Chew BL, Rose JKC (2012) Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol J 1–10. doi:10.1111/j.1467-7652.2012.00738.x

  • Shekhawat UKS, Srinivas L, Ganapathi TR (2011a) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932

    CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L (2011b) Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells. Mol Biol Rep 38:4023–4035

    CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813

    CAS  PubMed  Google Scholar 

  • Smolka A, Li X-J, Heikelt C (2010) Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Transgenic Res 19:933–948

    CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat UKS, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517

    CAS  PubMed  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R (2012) Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7(7):e40715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210

    CAS  PubMed  Google Scholar 

  • Stotz HU, Thomson JG, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4:1010–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki JY, Tripathi S, Fermin G, Hou S, Saw J, Ackerman CM, Yu Q, Schatz MC, Pitz KY, Yépes M, Fitch MMM, Manshardt RM, Slightom JL, Ferreira SA, Salzberg SL, Alam M, Ming R, Moore PH, Gonsalves D (2008) Characterization of insertion sites in Rainbow papaya, the first commercialized transgenic fruit crop. Trop Plant Biol 1:293–309

    CAS  Google Scholar 

  • Tan B, Li DL, Xu SX, Fan GE, Fan J, Guo WW (2009) Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliata [L.] Raf), a potential model genotype for functional genomics studies in Citrus. Tree Genet Genomes 5:529–537

    Google Scholar 

  • Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). S Afr J Bot 77:160–169

    CAS  Google Scholar 

  • Tillet RL, Wheatley MD, Tattersall EAR, Schlauch KA, Cramer GR, Cushman JC (2012) The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape. Plant Biotechnol J 10:105–124

    Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    CAS  PubMed  Google Scholar 

  • Trankner C, Lehmann S, Hoenicka H, Hanke M-V, Fladung M, Lenhardt D, Dunemann F, Gau A, Schlangen K, Malony M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in animal and perennial plants. Planta 232:1309–1324

    PubMed  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IBL (2012) Recent advances in development of marker free transgenic plants: regulation and biosafety concern. J Biosci 37:162–197

    Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple. J Biotechnol 154:304–311

    CAS  PubMed  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PG (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    CAS  PubMed  Google Scholar 

  • Veit J, Wagner E, Albrechtová JTP (2004) Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction. Plant Physiol Biochem 42:573–578

    CAS  PubMed  Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of grapevine fan leaf virus. Transgenic Res 13:165–179

    CAS  PubMed  Google Scholar 

  • Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, Velcheva M, Hanania U, Sahar N, Dgani O, Perl A (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res 20:61–72

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135

    CAS  PubMed  Google Scholar 

  • Wang H, Petri C, Burgos L, Alburquerque N (2013) Phosphomannose-isomerase as a selectable marker for transgenic plum (Prunus domestica L.). Plant Cell Tissue Organ Cult 113:189–197

    CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    CAS  PubMed  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    CAS  PubMed  Google Scholar 

  • Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478

    CAS  Google Scholar 

  • Wenzel S, Flachowsky H, Hanke MV (2013) The fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-013-0346-7

    Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233:971–983

    CAS  PubMed  Google Scholar 

  • Wurdig J, Flachowsky H, Hanke MV (2013) Studies on heat shock induction and transgene expression in order to optimize the Flp/FRT recombinase system in apple (Malus × domestica Borkh.). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-013-0376-1

    Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yang L, Hu CH, Li N, Zhang JY, Yan JW, Deng ZN (2011) Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol Biol 75:11–23

    CAS  PubMed  Google Scholar 

  • Youssef SM, Amaya I, Lopez-Aranda JM, Sesmero R, Valpuesta V, Casadoro G, Blanco-Portales R, Pliego-Alfaro F, Quesada MA, Mercado JA (2013) Effect of simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening. Mol Breed 31:313–322

    CAS  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V, Triplett EW, Mou Z (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100

    CAS  Google Scholar 

  • Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87–97

    CAS  PubMed  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author (M.K.R.) wishes to acknowledge to University Grants Commission (UGC), New Delhi, for Dr. D. S. Kothari Post Doctoral Fellowship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, M.K., Shekhawat, N.S. Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Organ Cult 116, 1–15 (2014). https://doi.org/10.1007/s11240-013-0389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0389-9

Keywords

Navigation