Skip to main content
Log in

Secondary cell wall characterization in a BY-2 inductive system

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant secondary cell walls (SCW) are likely to serve as major sources of sugars for biofuel production. Yet, current knowledge of SCW biosynthesis and modifications is far from complete. Cell culture has been suggested as an ideal system for identifying and characterizing cell wall biosynthetic genes. This knowledge will underpin strategies to improve bioenergy feedstocks, and their subsequent fermentation. We previously established a glucocorticoid receptor (GR)-mediated post-translational inducible system of VASCULAR-RELATED NAC DOMAIN7 (VND7) fused to the activation domain of the herpes virus VP16 in tobacco Bright Yellow-2 (BY-2) cells. VND7 is a master transcription factor that controls xylem vessel element differentiation. Its activation by dexamethasone (DEX) resulted in the induction of vessel element formation including cell wall thickening and cell death at high frequency. Here we investigate the kinetics of SCW-related genes after DEX induction in tobacco. Homologues of Arabidopsis cellulose and xylan biosynthetic genes were cloned, and used to conduct kinetic RT-qPCR. Results show an increase in SCW gene expression in BY-2 cells 10 h after DEX induction, with a maximum observed at 24 h. Biochemical analyses of the DEX-induced lines reveal increased cellulose to non-cellulosic polysaccharide ratio, as well as time-dependent increases in characteristic SCW polymers, such as xylan and mannan, indicating the deposition of true SCW. Therefore, we conclude that the BY2::VND7-VP16-GR cell suspension culture is a convenient in vitro system that can be used as an efficient tool to elucidate the regulation of SCW formation through RNA transcript and biochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RA (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci USA 109(3):989–993. doi:10.1073/pnas.1115858109

    Article  PubMed  CAS  Google Scholar 

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  PubMed  CAS  Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas Å, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137(3):983–997

    Article  PubMed  CAS  Google Scholar 

  • Blee KA, Wheatley ER, Bonham VA, Mitchell GP, Robertson D, Slabas AR, Burrell MM, Wojtaszek P, Bolwell GP (2001) Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters. Planta 212(3):404–415

    Article  PubMed  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen HM (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant J 74(3):423–434. doi:10.1111/tpj.12135

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turnera SR (2005) Identification of novel genes in arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 52(6):1154–1168

    Article  PubMed  CAS  Google Scholar 

  • Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57(4):732–746

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344(14):1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (2012) Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol 23(3):330–337. doi:10.1016/j.copbio.2011.12.003

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    Article  PubMed  CAS  Google Scholar 

  • Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé JC (2010) Wood formation in Angiosperms. C R Biol 333(4):325–334. doi:10.1016/j.crvi.2010.01.010

    Article  PubMed  Google Scholar 

  • Desnos T, Orbovic V, Bellini C, Kronenberger J, Caboche M, Traas J, Hofte H (1996) Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development 122(2):683–693

    PubMed  CAS  Google Scholar 

  • Doering A, Lathe R, Persson S (2012) An update on xylan synthesis. Mol Plant 5(4):769–771. doi:10.1093/mp/sss049

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem 28:350–356

    CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H (1992) Tracheary element formation as a model system of cell differentiation. Int Rev Cytol 136:289–332

    Article  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5(5):379–391

    Article  PubMed  CAS  Google Scholar 

  • Goubet F, Jackson P, Deery MJ, Dupree P (2002) Polysaccharide analysis using carbohydrate gel electrophoresis: a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal Biochem 300(1):53–68

    Article  PubMed  CAS  Google Scholar 

  • Goubet F, Barton CJ, Mortimer JC, Yu X, Zhang Z, Miles GP, Richens J, Liepman AH, Seffen K, Dupree P (2009) Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J 60(3):527–538. doi:10.1111/j.1365-313X.2009.03977.x

    Article  PubMed  CAS  Google Scholar 

  • Harris D, Debolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  PubMed  CAS  Google Scholar 

  • Ingold E, Sugiyama M, Komamine A (1988) Secondary cell wall formation: changes in cell wall constituents during the differentiation of isolated mesophyll cells of Zinnia elegans to tracheary elements. Plant Cell Physiol 29(2):295–303

    CAS  Google Scholar 

  • Kačuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203. doi:10.1016/s0144-8617(00)00151-x

    Article  Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19(16):1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Lacayo CI, Malkin AJ, Holman HY, Chen L, Ding SY, Hwang MS, Thelen MP (2010) Imaging cell wall architecture in single Zinnia elegans tracheary elements. Plant Physiol 154(1):121–133. doi:10.1104/pp.110.155242

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) The poplar GT8E and GT8F glycosyltransferases are functional orthologs of Arabidopsis PARVUS involved in glucuronoxylan biosynthesis. Plant Cell Physiol 50(11):1982–1987. doi:10.1093/pcp/pcp131

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Teng Q, Zhong R, Ye ZH (2012) Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan. Plant Cell Physiol 53(7):1204–1216. doi:10.1093/pcp/pcs064

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11(3):293–300. doi:10.1016/j.pbi.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RA, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144(1):43–53. doi:10.1104/pp.106.094995

    Article  PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277. doi:10.1016/j.pbi.2008.03.006

    Article  PubMed  CAS  Google Scholar 

  • Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR, Dupree P (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci USA 107(40):17409–17414. doi:10.1073/pnas.1005456107

    Article  PubMed  CAS  Google Scholar 

  • Nartop P, Akay Ş, Gürel A (2013) Immobilization of Rubia tinctorum L. suspension cultures and its effects on alizarin and purpurin accumulation and biomass production. PCTOC 112(1):123–128

    Article  CAS  Google Scholar 

  • Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y (2009) The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett 582(2):487–492. doi:10.1016/j.febslet.2008.12.049

    Article  Google Scholar 

  • Nookaraju A, Pandey SK, Bae HJ, Joshi CP (2013) Designing cell walls for improved bioenergy production. Mol Plant 6(1):8–10. doi:10.1093/mp/sss111

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137(3):1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Iida Y, Kondo Y, Fukuda H (2010) Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol 20(13):1197–1202. doi:10.1016/j.cub.2010.05.038

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson AB, Djerbi S, Winzell A, Bessueille L, Staldal V, Li X, Blomqvist K, Bulone V, Teeri TT, Berglund T (2006) Cell suspension cultures of Populus tremula x P. tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity. Protoplasma 228(4):221–229

    Article  PubMed  CAS  Google Scholar 

  • Peña MJ, Zhong R, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19(2):549–563

    Article  PubMed  Google Scholar 

  • Persson S, Wei H, Milne J, Page GP, Somerville CR (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA 102(24):8633–8638

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104(39):15566–15571. doi:10.1073/pnas.0706592104

    Article  PubMed  CAS  Google Scholar 

  • Pesquet E, Korolev AV, Calder G, Lloyd CW (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20(8):744–749. doi:10.1016/j.cub.2010.02.057

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174

    Article  CAS  Google Scholar 

  • Rennie EA, Hansen SF, Baidoo EE, Hadi MZ, Keasling JD, Scheller HV (2012) Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Plant Physiol 159(4):1408–1417. doi:10.1104/pp.112.200964

    Article  PubMed  CAS  Google Scholar 

  • Ruprecht C, Mutwil M, Saxe F, Eder M, Nikoloski Z, Persson S (2011) Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Front Plant Sci 2:23. doi:10.3389/fpls.2011.00023

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131(1):16–26

    Article  PubMed  CAS  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in arabidopsis. Plant Cell 12:2529–2539

    PubMed  CAS  Google Scholar 

  • Taylor NG, Howels RM, Huttly AK, Vickers K, Turner SR (2003) Interaction among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100(3):1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Thornber JP, Northcote DH (1962) Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. III. Xylan, glucomannan and alpha-cellulose fractions. Biochem J 82:340–346

    PubMed  CAS  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    PubMed  CAS  Google Scholar 

  • Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20(7):1736–1737. doi:10.1105/tpc.108.061143

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7): research0034-research0034.11. doi: 10.1186/gb-2002-3-7-research0034

  • Wu AM, Rihouey C, Seveno M, Hornblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57(4):718–731. doi:10.1111/j.1365-313X.2008.03724.x

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153(2):542–554. doi:10.1104/pp.110.154971

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55(4):652–664

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Goué N, Igarashi H, Ohtani M, Nakano Y, Mortimer JC, Nishikubo N, Kubo M, Katayama Y, Kakegawa K, Dupree P, Demura T (2010) VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system. Plant Physiol 153(3):906–914. doi:10.1104/pp.110.154013

    Article  PubMed  CAS  Google Scholar 

  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1986) Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 118:3–40

    Article  CAS  Google Scholar 

  • Zhou GK, Zhong R, Himmelsbach DS, McPhail BT, Ye ZH (2007) Molecular characterization of PoGT8D and PoGT43B, two secondary wall-associated glycosyltransferases in poplar. Plant Cell Physiol 48(5):689–699. doi:10.1093/pcp/pcm037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Igarashi for setting up the BY-2::VND7-VP16-GR lines and providing invaluable advices on cell culture systems. We would like to thank M. Araki, A. Ihara, S. Oyama and A. Takebayashi for their technical assistance. This work was supported in part by the RIKEN Plant Science Center. The work conducted by JCM and ZZ was supported by a grant from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) to PD.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia Goué or Misato Ohtani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2013_354_MOESM1_ESM.pdf

Supplementary Table 1 Summary of the candidate genes and primer sets used in this study. Degenerate primers were designed using IUPAC’s code for nucleotide degeneracy (PDF 282 kb)

Supplementary Table 2 Primer sets used for quantitative RT-PCR analysis (PDF 13 kb)

11240_2013_354_MOESM3_ESM.pdf

Supplementary Figure 1 Phylogenetic relationship of NtCESA4 (S1A), NtCESA7 (S1B), NtCESA8 (S1C), NtIRX8 (S1D), NtIRX9 (S1E) and NtIRX10 (S1F) with related sequences. Sequences are from the following species: At, Arabidopsis thaliana, Al, Arabidopsis lyrata, Bd, Brachypodium distachyon, Bl, Betula luminifera, Bn, Brassica napus, Bo, Bambusa oldhamii, Bp, Betula platyphylla, Cm, Cucumis melo, Ec, Eucalyptus camaldulensis, Egl, Eucalyptus globulus, Eg, Eucalyptus grandis, Gb, Gossypium barbadense, Gh, Gossypium hirsutum, Ghe, Gossypium herbaceum, Gk, Gossypioides kirkii, Gm, Glycine max, Gr, Gossypium raimondii, Hv, Hordeum vulgare, Jc, Jatropha curcas, Lj, Lotus japonicus, Ll, Leucaena leucocephala, Mt, Medicago truncatula, Np, Nicotiana plumbaginifolia, Nt, Nicotiana tabacum, Os, Oriza sativa, Pb, Populus balsamifera, Pe, Phyllostachys edulis, Pg, Picea glauca, Pm, Pseudotsuga menziesii, Pp, Physcomitrella patens, Pr, Pinus radiata, Ps, Picea sitchensis, Pt, Pinus taeda, Ptd, Populus tremuloides, Pti, Populus trichocarpa, Pto, Populus tomentosa, Ptxa, Populus tremula x Populus alba, Ptxt, Populus tremula x Populus tremuloides, Pu, Populus ussuriensis, Rc, Ricinus communis, Sb, Sorghum bicolor, Sl, Solanum lycopersicum, Sm, Selaginella moellendorffii, So, Saccharum officinarum, Sp, Shorea parvifolia, Ss, Salix sachalinensis, St, Solanum tuberosum, Ta, Triticum aestivum, Th, Thellungiella halophila,Vv, Vitis vinifera, Ze, Zea elegans, Zm, Zea mays, Zv, Zinnia violacea (PDF 2795 kb)

11240_2013_354_MOESM4_ESM.pdf

Supplementary Figure 2 (a) Time-course of BY-2 cell transdifferentiation after DEX induction. Count, amount of BY-2 cell transdifferentiation between 0 and 3 days after induction. Error bars indicating standard deviation for 3 counts of 200 BY-2 cells are shown. (b) BY-2:VND7-VP16-GR suspension cell culture 2 days after DEX induction showing one xylem vessel element transdifferentiation and two undifferentiated BY-2 cells (PDF 42 kb)

11240_2013_354_MOESM5_ESM.pdf

Supplementary Figure 3 Quantitative RT-PCR analysis from 0 to 3 Day After DEX Induction (DAI) of (a) AtVND7 in the BY-2::VND7-VP16-GR background, (b - g) genes of interest in the BY-2 wild type (WT) background. Bars show relative expression levels for each gene normalized with UBQ2 expression levels in BY-2 cell suspension culture with DEX induction (+DEX) and uninduced BY-2 cell suspension culture (-DEX). Error bars indicate standard deviation of 3 independent biological replicates (PDF 632 kb)

11240_2013_354_MOESM6_ESM.pdf

Supplementary Figure 4 Quantity of xylan in differentiating tobacco BY2 cells, calculated by PACE analysis. Error bars indicate standard deviation of 2 independent biological replicates (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goué, N., Mortimer, J.C., Nakano, Y. et al. Secondary cell wall characterization in a BY-2 inductive system. Plant Cell Tiss Organ Cult 115, 223–232 (2013). https://doi.org/10.1007/s11240-013-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0354-7

Keywords

Navigation