Skip to main content

Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions

Abstract

Reference genes are standards for quantifying gene expression through quantitative real-time PCR (qRT-PCR); however, the variation observed in their expression levels is the major hindrance towards realising their effective use. Hence, a systematic validation of reference genes is required to ensure proper normalization. However, no such study has been conducted in foxtail millet [Setaria italica (L.)], which has recently emerged as a model crop for genetic and genomic studies. In the present study, 8 commonly used reference genes were evaluated, including 18S ribosomal RNA, elongation factor-1α, Actin2, alpha tubulin, beta tubulin, translation factor, RNA polymerase II and adenine phosphoribosyl transferase. Expression stability of candidate internal control genes was investigated under salinity and dehydration treatments. The results obtained suggested a wide range of Ct values and variable expression of all reference genes. geNorm and NormFinder analysis had revealed that Act2 and RNA POL II are suitable reference genes for salinity stress-related studies and EF- and RNA POL II are appropriate internal controls for dehydration stress-related expression analyses. These qualified reference genes has also been validated for relative quantification of 14-3-3 expression analysis which demonstrated their applicability. Thus, this is the first report on selection and validation of superior reference genes for qRT-PCR in foxtail millet under different abiotic stress conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    PubMed  Article  CAS  Google Scholar 

  • Argyropoulos D, Psallida C, Spyropoulos CG (2006) Generic normalization method for real-time PCR. Application for the analysis of the mannanase gene expressed in germinating tomato seed. FEBS J 273:770–777

    PubMed  Article  CAS  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutumfor accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49

    PubMed  Article  Google Scholar 

  • Bas A, Forsberg G, Hammarström S, Hammarström ML (2004) Utility of the housekeeping genes 18SrRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol 59:566–573

    PubMed  Article  CAS  Google Scholar 

  • Bennetzen JL, Wang JSH, Percifield R, Hawkins J, Pontaroli AC, Estep M et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561

    Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    PubMed  Article  CAS  Google Scholar 

  • Condori J, Nopo-Olazabal C, Medrano G, Medina-Bolivar F (2011) Selection of reference genes for qPCR in hairy root cultures of peanut. BMC Res Notes 4:392

    PubMed  Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    PubMed  Article  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    PubMed  Article  CAS  Google Scholar 

  • Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS ONE 8:e56573

    PubMed  Article  CAS  Google Scholar 

  • Fink L, Seeger W, Ermert L, Hänze J, Stahl U, Grimminger F, Kummer W, Bohle RM (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333

    PubMed  Article  CAS  Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    PubMed  Article  CAS  Google Scholar 

  • Gilsbach R, Kouta M, Bönisch H, Brüss M (2006) Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques 40:173–177

    PubMed  Article  CAS  Google Scholar 

  • Ginzinger DG (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 30:503–512

    PubMed  Article  CAS  Google Scholar 

  • González-Verdejo CI, Die JV, Nadal S, Jiménez-Marín A, Moreno MT, Román B (2008) Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramose development. Anal Biochem 379:176–181

    PubMed  Article  Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, VanWuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493

    PubMed  Article  Google Scholar 

  • Gutierrez L, Mauriat M, Gue′nin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systemic validation of reference genes: serious pitfall undervalued in reverse transcription–polymerase chain reaction (RT–PCR) analysis in plants. Plant Biotechnol J 6:609–618

    PubMed  Article  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    PubMed  Article  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    PubMed  Article  Google Scholar 

  • Higuchi R, Fockler C, Dolinger G, Watson R (1993) Kinetic PCR analysis: real time monitoring of DNA amplification reaction. Biotechnology 11:1026–1030

    PubMed  Article  CAS  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    PubMed  Article  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    PubMed  Article  CAS  Google Scholar 

  • Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40:241–251

    PubMed  Article  CAS  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    PubMed  Article  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125

    PubMed  Article  CAS  Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    PubMed  Article  CAS  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828

    PubMed  Article  CAS  Google Scholar 

  • Lata C, Gupta S, Prasad M (2012) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol. doi:10.3109/07388551.2012.716809

    PubMed  Google Scholar 

  • Libus J, Štorchová H (2006) Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques 41:156–164

    PubMed  Article  CAS  Google Scholar 

  • Liu Z, Ge X-X, Wu X-M, Kou S-J, Chai L-J, Guo WW (2013) Selection and validation of suitable reference genes for mRNA qRT-PCR analysis using somatic embryogenic cultures, floral and vegetative tissues in citrus. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-013-0288-0

    Google Scholar 

  • Nicot N, Hausman J-F, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    PubMed  Article  CAS  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protocols 1:1559–1582

    Article  CAS  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    PubMed  Article  CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    PubMed  Article  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    PubMed  Article  CAS  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    PubMed  Article  CAS  Google Scholar 

  • Sellars MJ, Vuocolo T, Leeton LA, Coman GJ, Degnan BM, Preston NP (2007) Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 129:391–399

    PubMed  Article  CAS  Google Scholar 

  • Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259:365–368

    PubMed  Article  CAS  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    PubMed  CAS  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    PubMed  Article  CAS  Google Scholar 

  • Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    PubMed  Article  Google Scholar 

  • Van Guilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:7

    Article  Google Scholar 

  • Veistinen E, Liippo J, Lassila O (2002) Quantification of human Aiolos splice variants by real-time PCR. J Immunol Methods 271:113–123

    PubMed  Article  CAS  Google Scholar 

  • Xu Y, Zhu X, Gong Y, Xu L, Wang Y, Liu L (2012) Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochem Biophys Res Commun 424:398–403

    PubMed  Article  CAS  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554

    Google Scholar 

  • Zhu J, Zhang L, Li W, Han S, Yang W, Qi L (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS ONE 8:e53196

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Grateful thanks are due to the Director, National Institute of Plant Genome Research (NIPGR), New Delhi, India for providing facilities. The authors work in this area was supported by the core Grant of NIPGR. Mr. Karunesh Kumar and Mr. Mehanathan Muthamilarasan acknowledge the award of Senior Research Fellowship and Junior Research Fellowship from Council of Scientific and Industrial Research and University Grants Commission, New Delhi, India, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, K., Muthamilarasan, M. & Prasad, M. Reference genes for quantitative real-time PCR analysis in the model plant foxtail millet (Setaria italica L.) subjected to abiotic stress conditions. Plant Cell Tiss Organ Cult 115, 13–22 (2013). https://doi.org/10.1007/s11240-013-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0335-x

Keywords

  • Abiotic stress
  • Foxtail millet
  • Reference genes
  • Quantitative real time PCR (qRT-PCR)
  • GeNorm
  • NormFinder
  • Setaria italica